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Scaling and Universality

Here, we show how the combined TS2-SL model allows for the type of universality hypothesized by
Casalini, Roland, Ngai, Paluch, and co-workers. We would like to re-phrase this universality in the
following way:

1. The a-relaxation time and the Johari-Goldstein pB-relaxation time — and by implication the whole
dielectric relaxation spectrum — depend not on temperature T and pressure P separately, but
rather on one combined “state variable” Z = T,(P)/T — 1.

2. The equilibrium and supercooled liquid specific volume, V,,(T,P), the temperature T, and the a-

relaxation time, 1,, are related via, 7, (T,P): f (T[VWp (T,p)]y )

3. The relationship (2) above can be extended to the non-equilibrium, “glassy” branch if the
cooling experiments for different pressures are done at the same cooling rate.

Below, we show that the conditions (1)—(3) provide a set of constraints that enables us to uniquely
determine the model parameters as a function of pressure.

We begin by analyzing the TS2 equations for the relaxation times,

z,(T,P)=1, exp[%+ w (T, P)} (S1)
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7,(T,P)=1,exp [%} (52)

The variables y and v are described by the coupled equations below (equations 6a and 6b of the main

text; in eq 6b, we disregard the small P term)

In—Y +A§_Mfﬂ=o (53)
~y

%{ln(l—v)ﬂ/{l—%HHﬂJ:O (s4)

o [} o
In equation S3, AS, AU , and AV are functions of y and v. To show that the scaling relationships hold
(at least approximately), we first introduce the following auxiliary variables: the transition temperature

Tx(P), defined as the temperature where ¥ (TX (P),P): 0.5, and the “state variable” Z, defined as

T, (P
Z = %)—1. We now need to show that y and v depend only on Z, and not on T and P separately.

Let us consider equation S4 first. It can be re-written as,

| T, (P){ln(l_v)+v{1_LH+v2J:O (55)

27 (P) )

T, (P)

" (P)

Now, consider eq (S3), re-written in original terms,

Clearly, as long as = const., the scaling is satisfied.

y_ AS_AU+PAV _
-y R RT

In

0 (S6)

Substituting T in terms of Z, we obtain,



v AS 1+Z AU+PAV _

——t—- 0
1—w+'R T,(P) RT 7

In

For fragile glass-formers like PS and PMMA, AU can be considered nearly constant, AU = AU ,, .

Furthermore, PAV << AU, . Thus, we can approximate

X X

AU +PAV ~ AU, + PAV =AU, | 1+ 287 < AU, exp| ZAY|.
AU AU

Equation S7 can be now re-written as,

AU, ex
v AS 14z " p[AUg

PAV]
——+
I-y R T,(P) RT

=0 (S8)

In

Thus, to satisfy scaling and eliminate P, one needs to assume that,

T (P)=T, (o)exP(Z@VjETX <0>exp(,§J

X 0,7

Thus, we have shown that y and v depend only on Z, and not on T and P separately. Now let us consider
T, and tp, given by equations S1 and S2. We can re-cast those equations as:

EZ
RT,(

il)(lJrZ)y/(Z)} (59)

o0

1n£%fz)]={R£iP)O+z)+

ln[rﬁ(z)j:[ £ (1+Z)} ($10)

Thus, to eliminate the explicit P-dependence, one needs to set up the following conditions,



. is a constant (no P-dependence) (S11a)
7.(P) i
E,(P).

° is a constant (no P-dependence) (S11b)
T.(P)

Now, let us consider the behavior of the specific volume in the equilibrium and supercooled liquid state.
The specific volume, V,(T,P), is given by,

(512)

The average length, <r> =yry+ (1 —y/)rL , depends only on Z, and so does the occupancy, v.

Thus, v, (T,P)z Vo (P)g(Z), where g denotes some unspecified function.

Let us now test the Casalini-Roland scaling, 7, (T,P): f(T[Kp (T,P)T ) The left-hand side is a

function of Z alone — what about the right-hand side? We can write the right-hand side as,

T (P
rits = 1 ([, (r.P)] ) f[ -0, <P>g<z>17] i QQRIGIRIC)
(513)
where h(Z) is another unspecified function.
Thus, for the scaling to work, one requires that,
T (P)[vo (P)]y = const. (S14a)

Or



w(P) [1.0))
» (o){w)} -

The reduction in the specific volume of the material upon the increase in pressure is therefore related to
the increase in the transition temperature, as one would expect. The parameter y is material-
dependent.

If — as discussed above -- we assume that the pressure dependence of the transition temperature, T,
and the vacancy volume, vy, is exponential (and we are only considering “small” pressures so that the
functional form is only a matter of convenience), then,

Yo (P):exp i} (S15a)
VO (0) _])0,\/
T)C(P):exp i} (S15b)
r.(0) A

It is straightforward to see that condition (S14b) means that,

F.=7F, (S16)

The parameter £, or simply F, is the inverse of the zero-temperature compressibility of the material,

or its bulk modulus, B.

Finally, let us consider the effect of cooling rate and determine the scaling and universality there. The
equations of evolution for the solid fraction, y, and the dimensionless density, v, are written as,

dy _v (T().P)y

dt 7, (T(t).P)

(S17a)



dv v (z//,T(t),P)—v

= (S17b)
dt 7, (T(t).P)
The temperature is a linear function of time,
T(t)=T,—kt (518)

with k being the cooling rate and T, the initial temperature (note that its significance is negligible if it is

sufficiently high in the equilibrium liquid zone, so that the initial portion of the cooling is fully
equilibrated).

Once again, introducing the state variable Z and expressing time and temperature via Z, we obtain,

£ [1+Z]Zd_'/’='/’*(z)‘@”

re)y Nz T (2) s1%e)
k dv v (l//,Z)—v

" Nz V=) &

rol A ) (sast)

The solid-fraction and density relaxation times, T, and 7, are functions of the a- and B-relaxation

times. Since 1, and tg depend only on Z (not on T and P separately), so do 7, and 7, .

The initial conditions to equations (S19) reflect the fact that at the beginning of the cooling experiment,
the material is fully equilibrated,

v (Z,(P))=v"(Z,(P))=v., (% (P)) (520a)

v(Z,(P))=v (l//* (2,(P)).Z, (P))E vy (Z,(P)) (520b)

Suppose now that we obtained a numerical solution describing the solid fraction and density at P = 0 for
a given cooling rate k(0) and a given initial temperature T,(0). The solution is denoted as



(l// (k (O), Z),V (k (0), Z)), with temperature back-calculated as T = %(;) . Obviously, the same

solution would also describe the cooling process at pressure P, provided that the cooling rate is rescaled

Z.(P) - L.(P) . .

to k(P): k(O) - , and the temperature is now given by 7 =———= In practice, the required
r.(0) 1+

change in the cooling rate (5-10%) probably can be neglected, and one can say that the cooling

dynamics are universal when described using the state variable Z, rather than time t or temperature T.



