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Simulation methodology 

Atomistic molecular dynamics simulation 

 We simulated the monodisperse (unconcatenated and unknotted) ring polyethylene (PE) 

melts via atomistic canonical (NVT) molecular dynamics (MD) method at constant temperature (T 

= 450 K) and density (corresponding to the pressure P = 1 atm) by using the set of the equations 

of motion, implemented with the Nosé–Hoover thermostat:1-3 
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where qia, pia, and Fia are, respectively, the position, momentum, and force vectors of atom a in 

molecule i of mass mia. D denotes the dimensionality of the system and kB the Boltzmann constant. 

N and V represent the total number of atoms and the volume of the system, respectively. ς  and ςp  

are the coordinate- and momentum-like variables, respectively, of the Nosé–Hoover thermostat. Q 

is the mass parameter of the thermostat. The thermostat relaxation time parameter τ was set equal 

to 0.12 ps for all simulations The set of equations of motion in the atomistic MD simulation were 

numerically integrated using the efficient reversible Reference System Propagator Algorithm (r-

RESPA)4 with two distinct time scales: a short time scale of 0.47 fs for three bonded (bond-

stretching, bond-bending, and bond-torsional) interactions and a long time scale of 2.35 fs for 

nonbonded intramolecular and intermolecular Lennard–Jones (LJ) interactions.  
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 The well-known Siepmann-Karaboni-Smit (SKS) united-atom model5 was adopted for all 

the atomistic simulations because of its broad usage and accuracy for predicting structural and 

dynamical properties of linear alkanes. In this model, the nonbonded intermolecular and 

intramolecular interactions between atomic units are described by a standard 6-12 LJ potential: 

12 6

LJ( ) 4
σ σ

ε
    
            

= −
ij ij

ij ij
ijU r

r r
                                                      (2) 

where ε ε ε=ij i j  and ( ) 2σ σ σ= +ij i j  for cross interactions between atoms i and j by adopting 

the standard Lorentz-Berthelot mixing rules. ijr  is the distance between atoms i and j.  For the CH2 

united atom in ring polyethylene (PE) molecules, the LJ energy parameter 
2CHε Bk  was equal to 

47 K, and the LJ size parameter 
2CHσ  was equal to 3.93 Å. A cut-off distance equal to 2.5

2CHσ was 

used in all simulations. The intramolecular LJ interaction was active only between atoms separated 

by more than three bonds along the chain.  

 The bond-stretching interaction is described by harmonic potential: 

 
2str

stretching eq( ) ( )
2

= −k
U l l l                                                  (3) 

with the equilibrium bond length eql   = 1.54 Å and bond-stretching constant str Bk k   = 452,900 

K/Å2. The bond-bending interaction is also applied based on a harmonic potential: 

2ben
bending eq( ) ( )

2
θ θ θ= −k

U                                                                  (4) 

with the equilibrium bending angle eqθ  = 114° and bond-bending constant ben Bk k  = 62,500 K/ 
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rad2 based on van der Ploeg et al.6. The bond-torsional interaction is governed by the potential by 

Jorgensen et al.:7  

3

torsional
0

( ) cosφ φ
=

= m
m

m

U a                                                  (5)                                

with the bond-torsional constants 0 Ba k  = 1010 K, 1 Ba k  = 2019 K, 2 Ba k = 136.4 K and 3 Ba k  

= – 3165 K.  

The nearly 2D confined atomistic systems employed in this study were constructed by 

placing two simple rigid, repulsive walls which simply do not allow polymer chains to move out 

of the boundary walls. This allows us to focus on the general, fundamental characteristics of 

polymeric systems under extreme confinement, without regard to the specific polymer-wall 

interactions. The repulsive wall was described by the Weeks-Chandler-Anderson (WCA) 

potential:8 
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where 
2W CH / 2σ σ=i , Wε i Bk  = 47 K, and wir  is the distance between atom i and wall surface. 

The system density was determined by additional atomistic isothermal-isobaric (NPT) MD 

simulations at constant temperature (T = 450 K) and pressure (P = 1 atm) using the Nosé-Hoover 

thermostat and barostat with their relaxation time parameters being set equal to 0.12 ps.  
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Coarse-grained Kremer-Grest (KG) simulation 

NVT coarse-grained (CG) KG simulations of the monodisperse (unconcatenated and 

unknotted) ring melt systems were conducted at constant temperature KG /ε= BT k  using Langevin 

thermostat and a constant area for the strictly 2D systems. The equations of motion for the position 

vectors implemented with the Langevin thermostat for Canonical KG MD simulations9 are as 

follows: 

 ( )= − Γ +r F r Wɺɺ ɺ
i i i im t                                                  (7) 

where ri   and Fi are the position and force vectors of bead i, respectively. The bead friction 

coefficient was set as 
KG

10.5τ −Γ =   at constant temperature KG /ε= BT k  . ( )Wi t   denotes the 

Gaussian white noise source with zero mean at a temperature T and satisfies the standard 

fluctuation-dissipation relation for 2D systems: ( ) ( ) 4 ( )δ δ′ ′< ⋅ >= − ΓW Wi j ij Bt t t t k T .  

The KG simulations were carried out with the four (intermolecular, intramolecular, bond-

stretching, and bond-bending) interaction potentials. Shifted LJ (WCA) potential function is 

applied to calculate intermolecular and intramolecular interactions between beads: 

1/6KG KG
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where KGσ   and KGε   are the LJ bead size and energy parameters, respectively. ijr   denotes the 

distance between beads i and j. The cut-off distance is set as 1/6
KG2 σ=cr . The bond-stretching 

interaction is described by the finitely extensible nonlinear elastic (FENE) potential:  
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with the maximum bond length 0 KG1.5σ=R  and bond-stretching constant 2
KG KG30 /ε σ=k .9 ijr  

is the distance between the two neighboring beads i and j=i+1. The bond-bending interaction is 

given by 

KG
bending [1 cos ]( ) θ θθ −=i iU k                                                                  (10) 

with the bond-bending constant 0θ =k , 3θ =k , and 4θ =k , and the bending angle θi between the 

two consecutive bond vectors 1−= −b r r
� � �

i ii  and 11 ++ = −b r r
� � �

i ii .10,11 
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Supplementary Note 1 

As shown in our previous15 and present studies, polymer chains, when narrowly confined 

or at interfaces, intrinsically attain a certain degree of chain stiffness. Fundamentally, this change 

in chain flexibility stems from an entropic penalty in association with the reduction in available 

chain configurational states by geometric constraint. However, the existing theoretical and 

numerical models (e.g., the Rouse model and the standard KG model) for dense 2D linear and ring 

polymer systems are, as essentially similar to the models for the corresponding 3D systems, based 

on the random walk or self-avoiding random walk (SAW) of individual chain segments without 

properly accounting for the naturally arising chain stiffness caused by dimensional restriction in 

2D space. Accordingly, those theoretical analyses based on random-walk chain models for 2D or 

very narrowly confined systems12,13 are likely to result in physically incorrect results. For instance, 

the Rouse model and the standard KG model including de Gennes’s analysis give rise to the 

compact segregated chain configurations for 2D concentrated polymer solutions or melts of 

general flexible polymers, which is in sharp contradiction to the extended interpenetrated chain 

configurations attained by our direct 2D atomistic simulations and available interfacial 

experiments such as monolayer Langmuir polymer films.14 Also, the atomistic results in Fig. 2 

clearly refute the Rouse model prediction of 2 2
g gRing Linear

2R R=  for 2D confined melt systems 

of the same chain length. Further, the atomistic simulations exhibit a non-Gaussian probability 

distribution ( )eteP R  of the chain end-to-end distance eteR  for the 2D linear melt systems,15 in 

stark contrast to the typical Gaussian behavior predicted by the random-walk based Rouse model 

and standard KG model. In addition, while the atomistic simulations show approximately a Rouse-

like scaling behavior with 2
Relaxτ ∼ N for the 2D linear and ring PE melts, they invalidate the Rouse 
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model prediction for the value of ( ) ( )Relax RelaxRing Linear
4τ τ= . Furthermore, as shown in Fig. 7, the 

standard 2D KG model with kθ = 0 (without accounting for the naturally arising chain stiffness due 

to dimensional constraints) produce generally inconsistent results for the main structural and 

dynamical properties in comparison to those obtained from the direct 2D atomistic simulations. 

In addition, as shown below, the direct 2D atomistic simulations show some deviations for 

scaling behaviors of structural and dynamical properties in comparison to the theoretical results 

by A. N. Semenov and A. Johner13 for monolayer linear polymer melts.  

 Semenov-Johner model13 2D atomistic result15 

2
gR  N  0.97 0.03±N  

L  (perimeter monomer) 0.625N  0.80 0.03±N  

GD  0.875−N  0.96 0.04− ±N  

Relaxτ  1.875N  1.92 0.10±N  
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Supplementary Note 2 

Two-dimensional (2D) Rouse model for linear and ring polymers 

Here we present a detailed analysis of the 2D Rouse model of linear and ring polymers. 

The derivation is essentially similar to that of the corresponding three-dimensional (3D) model.16 

As standard, the effect of hydrodynamic interactions is not included in this analysis, which thus, 

based on the mean-field concept, refers to short unentangled polymer melt systems. Each chain is 

composed of N coarse-grained beads with an effective hydrodynamic friction coefficient ζ , which 

are connected by Gaussisan springs of the equilibrium length b and spring constant 22= BK k T b

for 2D systems where Bk is the Boltzmaan constant and T the temperature. The dynamics of an N-

bead Rouse chain under equilibrium conditions can be decribed by the following Langevin eqation: 

  ( ) for 1,2, ,n
n

n

U
t n N

t
ζ ∂ ∂= − + =

∂ ∂
R

f
R

⋯                    (11) 

where U represents the harmonic poetential energy of the Gaussisan springs:  

1
2

1
1

( )
2

−

+
=

= − R R
N

n n
n

K
U        (12) 

Here Rn  denotes the position vector of the nth bead and ( )fn t is the random Brownian force exerted 

on this bead. The ( )fn t  obeys the following eqations:  

( ) 0=fn t                  (13a) 

( ) ( ) 2 ( )α β αβζ δ δ δ′ ′= −n m B mnf t f t k T t t  for α,β = x, y                  (13b) 

where δmn  is the Kronecker delta and ( )δ ′−t t  denotes the Direc delta function. Combining eqns 
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(1) and (2), we obtain this equation: 

2

2
( )ζ ∂ ∂= +

∂ ∂
R R

fn n
nK t

t n
                (14) 

The boundary conditions for the 2D linear polymer are as follows: 

0

0
=

∂ =
∂
Rn

nn
, 0

=

∂ =
∂
Rn

n Nn
                                                 (15) 

On the other hand, the boundary conditions for the 2D ring polymer are as follows: 

0 =R RN , 
0= =

∂ ∂=
∂ ∂
R Rn n

n n Nn n
                                                   (16) 

To conveniently solve the Rouse model, we can employ the normal coordinates ( )X p t  and ( )Yp t  

through 

0
1

( ) 2 cos( ) 2 sin( )
π π∞

=

 = + +  
R X X Yn p p
p

p n p n
t

N N
                 (17a) 

0

1
( ) ( ) cos( )d

π= X R
N

p n

p n
t t n

N N
 for p = 0, 1, 2, 3, 4, …       (17b) 

0

1
( ) ( )sin( )d

π= Y R
N

p n

p n
t t n

N N
 for p = 1, 2, 3, 4, …     (17c) 

Applying the boundary conditions (eqn (5)) to eqn (7a), we find the following result for the linear 

polymer:  

0
;

( ) 2 cos( ) 2 sin( )
π π∞  = + +  

R X X Yn p p
p even

p n p n
t

N N
                  (18a) 
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0

1
( ) ( ) cos( )d

π= X R
N

p n

p n
t t n

N N
 for p = 0, 1, 2, 3, 4, …          (18b) 

( ) 0=Yp t  for p = 1, 2, 3, 4, …       (18c) 

By applying the boundary conditions (eqn (6)) to eqn (7a), we find the following result for the ring 

polymer:  

0
;

( ) 2 cos( ) 2 sin( )
π π∞  = + +  

R X X Yn p p
p even

p n p n
t

N N
                  (19a) 

0

1
( ) ( ) cos( )d

π= X R
N

p n

p n
t t n

N N
 for p = 0, 2, 4, 6, …     (19b) 

0

1
( ) ( )sin( )d

π= Y R
N

p n

p n
t t n

N N
 for p = 2, 4, 6, 8, …    (19c) 

where p;even in the summation represents only the even p-modes, i.e., 2, 4, 6, 8p = ⋯ . Note that 

all the odd modes should vanish for ring polymers. 

In terms of the normal coordinates, the set of the Langevin equation (eqn (1)) for the 2D linear 

polymer can be equivalently written as 

2 ζ
∂

= − +
∂
X

X fp X
p P pN k

t
                                          (20a) 

0
2 ( )cos( )d

π= f f
NX

p n

p n
t n

N
 for p = 0, 1, 2, 3, 4, …                     (20b) 

where  
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2
2

2

4π= B
p

k T
k p

Nb
 for p =0, 1, 2, 3, 4, …                              (21) 

Using eqn (3), we also find 

( ) 0X
p t =f             (22a) 

( ) ( ) 4 ( ) for 0 or 0X X
p q B pqf t f t N k T t t p qα β αβζ δ δ δ′ ′= − ≠ ≠                    (22b) 

0 0( ) ( ) 8 ( )X X
Bf t f t N k T t tα β αβζ δ δ′ ′= −                  (22c) 

Solving eqn (10a) for Xp, we find 

1
( ) ( )exp ( ) d

2
τ

ζ −∞
′ ′ ′ = − − X f

t X
P p pt t t t t

N
 p = 0, 1, 2, 3, 4, …             (23) 

where 

 
2 2

2 2

1

2

ζτ
π

=p
B

N b

k T p
 for p = 1, 2, 3, 4, …                                 (24) 

Using eqn (12), we then obtain 

( )( ) (0) exp / for , 1, 2, 3, 4,B
p q pq p

p

k T
X t X t p q

kα β αβδ δ τ= − = ⋯            (25) 

Similarly, the set of the Langevin equation (eqn (1)) for the 2D ring polymer can be equivalently 

written as 

2 ζ
∂

= − +
∂
X

X fp X
p P pN k

t
             (26a) 
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0
2 ( )cos( )d

π= f f
NX

p n

p n
t n

N
 for p = 0, 2, 4, 6, …        (26b) 

2 ζ
∂

= − +
∂
Y

Y fp Y
p P pN k

t
             (26c) 

0
2 ( )sin( )d

π= f f
NY

p n

p n
t n

N
 for p = 2, 4, 6, 8, …        (26d) 

where 

 
2

2
2

4π= B
p

k T
k p

Nb
 for p =0, 2, 4, 6, …          (27) 

Using eqn (3), we also find 

( ) ( ) 0X Y
p pt t= =f f      (28a) 

( ) ( ) ( ) ( ) 4 ( ) for 0 or 0X X Y Y
p q p q B pqf t f t f t f t N k T t t p qα β α β αβζ δ δ δ′ ′ ′= = − ≠ ≠  (28b) 

0 0( ) ( ) 8 ( )X X
Bf t f t N k T t tα β αβζ δ δ′ ′= −             (28c) 

( ) ( ) 0 for all andX Y
p qf t f t p qα β ′ =            (28d) 

Solving eqns (16a) for Xp and (16c) for Yp, we find 

1
( ) ( )exp ( ) d

2
τ

ζ −∞
′ ′ ′ = − − X f

t X
P p pt t t t t

N
 p = 0, 2, 4, 6, …             (29a) 

1
( ) ( )exp ( ) d

2
τ

ζ −∞
′ ′ ′ = − − Y f

t Y
P p pt t t t t

N
 p = 2, 4, 6, 8, …                 (29b) 

where  
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2 2

2 2

1

2

ζτ
π

=p
B

N b

k T p
 p = 2, 4, 6, 8, …                                   (30) 

Using eqn (18), we also obtain 

( )( ) (0) exp / for , 0, 2, 4, 6,B
p q pq p

p

k T
X t X t p q

kα β αβδ δ τ= − = ⋯        (31a) 

( )( ) (0) exp / for , 2, 4, 6,B
p q pq p

p

k T
Y t Y t p q

kα β αβδ δ τ= − = ⋯    (31b) 

( ) (0) 0 for all andp qX t Y p qα β =                     (31c) 

(a) Relaxtion time 

According to eqn (14), the longest characteristic relaxation (Rouse) time for the 2D linear polymer 

is therefore 

2 2

, 1 22

ζτ τ
π

= =R linear
B

N b

k T
                                                    (32) 

Similarly, according to eqn (20), the longest characteristic relaxation time for the 2D ring polymer 

is  

 

2 2

, 2 28

ζτ τ
π

= =R ring
B

N b

k T
                                                    (33) 

We thus see that the Rouse time of the 2D ring polymer is equal to one-fourth of that of the 

corresponding 2D linear polymer, i.e., , , / 4R ring R linearτ τ= , which is essentially the same as the 3D 
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Rouse model prediction for ring and linear polymers.16  

(b) Mean-square chain end-to-end distance and ring diameter 

Defining the chain end-to-end vector as 0( ) ( ) ( )ete Nt t t≡ −R R R  for the linear polymer, we obtrain 

from eqn (8a) that 

0( ) ( ) ( ) 4 cos( )
π∞

=

 = − = −   
R R R Xete N p

p odd

p n
t t t

N
                           (34a) 

2

;

;

2
2 2

;

( ) (0) 16 ( ) (0) cos ( )

32 exp( )

8
exp( )

ete ete p p
p odd

B
p

p odd P

p
p odd

p n
t t

N

k T
t

k

Nb t
p

π

τ

τ
π

∞

∞

∞

 ⋅ = ⋅  

 
= − 

 

= −







R R X X

                      (34b) 

2
2 2

2 2
;

8 1
ete

p odd

Nb
Nb

pπ

∞

= =R                                        (34c) 

where p;odd in the summation represents only the odd p-modes, i.e., 1, 3, 5, 7p = ⋯ . 

Defining the ring diameter vector as /2( ) ( ) ( )d n N nt t t+≡ −R R R  with 1, 2, ,n N= ⋯  for the ring 

polymer, we obtain from eqn (9a) that 

2
2,6,10,...

( ) ( ) ( ) 4 cos( ) sin( )
π π∞

+
=

 = − = − +  
R R R X Yd n N n p p

p

p n p n
t t t

N N
           (35a) 
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2 2

2,6,10,14,...

2,6,10,14,...

2
2 2

2,6,10,14,...

( ) (0) 16 ( ) (0) cos ( ) ( ) (0) sin ( )

32 exp( )

8
exp( )

d d p p p p
p

B
p

p P

p
p

p n p n
t t t

N N

k T
t

k

Nb t
p

π π

τ

τ
π

∞

=

∞

=

∞

=

 ⋅ = ⋅ + ⋅  

 
= − 

 

= −







R R X X Y Y

   (35b) 

2 2 2
2

2 2 2 2
2,6,10,14,... ;

8 1 2 1

4d
p p odd

Nb Nb Nb

p pπ π

∞ ∞

=

= = = R            (35c) 

Therefore, the mean-square ring diameter of a 2D ring chain is equal to one-fourth of the mean-

square chain end-to-end of the 2D linear analogue. This result is the same as that of the 3D Rouse 

model for ring and linear polymers. 

(c) Mean-square chain radius of gyration 

In addition, we can also find the mean-square radius of gyration ( )22

1

1 N

g n G
n

R
N =

= − R R  with 

the center-of-mass position vector 
0

1 N

G n dn
N

= R R  for 2D ring and linear polymers. From eqn 

(8b), it is seen that X0 is equal to GR . We then derive the following expression for the mean-

square radius of gyration for the 2D linear polymer.  
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( )

( )

22

1

2

1 1

2 2

0
1

2

1

2 2

2 2
1

1

1
2 cos( )

4
d cos ( )

2

1

6

N

g n Glinear
n

N

p
n p

N

p
p

p
p

p

R
N

p n

N N

p n
n

N N

Nb Nb

p

π

π

π

=

∞

= =

∞

=

∞

=

∞

=

= −

  =     

 =   

=

= =



 

 





R R

X

X

X

               (36) 

Similarly, we obtain the following result for the 2D ring polymer. 

( )

( )

22

1

2

1

2 2 2 2

0 0

2 2

2 2

2 2

1

1
2 cos( ) 2 cos( )

4
d cos ( ) d sin ( )

2

2 1

12

N

g n Gring
n

N

p p
n p even

N N

p p
p even

p p
p even

p even

R
N

p n p n

N N N

p n p n
n n

N N N

Nb Nb

p

π π

π π

π

=

∞

= =

∞

=

∞

=

∞

=

= −

  = +    

 = +  

= +

= =



 

  





R R

X Y

X Y

X Y

           (37) 

It is thus seen that the mean-square radius of gyration of a 2D ring chain is equal to one-half that 

of the corresponding 2D linear chain. This is again the same as the 3D Rouse model prediction for 

ring and linear polymers. 

(d) Diffusion coefficient 

According to eqn (10a) for the 2D linear polymer, the dynamics of 0X (=RG) is governed by 



18 

 

0
0

0 0 00

1

2

1
( ) (0) ( )d

2

ζ

ζ

∂ =
∂

′ ′= + 

X
f

X X f

X

t X

t N

t t t
N

       (38) 

Using eqn (12c), we arrive at 

0 0 0 0

2

0 00 0

( ) (0) ( ) (0)

21
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2

t t
B

X t X X t X

k T
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 

 
      (39) 

and thus  

( )2 4
( ) (0)

ζ
− =R R B

G G

k T
t t

N
                                              (40) 

From the well-known Einstein equation for self-diffusivity, the center-of-mass diffuison 

coefficient GD  for the 2D linear polymer is therefore found to be 

( )2

,

( ) (0)
lim

4

G G
B

G linear
t

t k T
D

t Nζ→∞

−
= =

R R
                                        (41) 

Similarly, based on eqns (16a) and (16c), we find for the 2D ring polymer that 

( )2

,

( ) (0)
lim

4

G G
B

G ring
t

t k T
D

t Nζ→∞

−
= =

R R
                                        (42) 

Therefore, the center-of-mass diffuison coefficient of the 2D ring polymer is equal to that of the 

2D linear analogue, which appears to be the same as the corresponding 3D Rouse model prediction. 

Below summarized are the primary structural and dynamical properties predicted by the 
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Rouse model for the 2D linear and ring polymers in comparison to the corresponding 3D analogues. 
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Supplementary Note 3 

In comparison to those of the corresponding 3D systems, the key distinctive feature in the 

MSDs of both ring and linear chains in 2D confined melt systems is that chains in the 2D systems 

tend to move as a whole with their monomers in a concerted manner. This characteristic is closely 

associated with the following distinct diffusive dynamics of the 2D melt systems compared to the 

corresponding 3D systems: (a) the monomeric MSDs [g1(t) and g2(t)] are not much larger than g3(t) 

at short-to-intermediate time scales for the 2D systems, which is in sharp contrast to those for the 

3D system, (b) g2(t) and g3(t) for the 2D systems cross each other at a much early time before 

reaching the 2
gR -length scale, unlike for the 3D system, (c) the overall faster diffusive motion of 

the 2D chains in comparison to the corresponding 3D analogues, which is also influenced by the 

absence of complex topological constraints between chains (i.e., interchain entanglement and 

mutual ring threading) in the 2D systems, and (d) the significantly diminished dynamic role of the 

chain ends of the linear polymer results in the overall quantitatively similar dynamic behaviors of 

the MSDs [g1(t), g2(t), and g3(t)] between 2D ring and linear chains, in spite of the difference in 

their intrinsic molecular architectures, which is in stark contrast to those for the 3D system.  

We further note that the general diffusive mechanism of chains in the 2D systems is quite 

distinctive from that of the 3D systems; i.e., 2D chains, with frequent stretching out or coiling of 

the chain-end segments, often fold back to their previous chain contour due to the spatial blockage 

by other adjacent chains, leading to a narrow, extended double-stranded local segmental 

conformation. 
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Description of supplementary movies 

 

Movie S1 Chain dynamics for 2D and 3D L_400 PE melts (left) and R_400 PE melts (right) from 

atomistic molecular dynamics simulations. 
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Movie S2 Dynamics of a randomly selected chain for 2D L_600 PE melt from atomistic molecular 

dynamics simulations. 

 

 

Movie S3 Dynamics of a randomly selected chain for 2D R_600 PE melt from atomistic molecular 

dynamics simulations. 
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Fig. S1 Rescaled mean-square chain end-to-end distance 2
ete a/< >R N   of polymer chains as 

functions of chain length for 2D (black) and 3D (green) linear PE melts on a log–log plot. The data 

for the 2D and 3D linear systems were obtained from ref. 15. 
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Fig. S2 The MSDs for 2D (dash-dot lines) and 3D (dotted lines) R_600 PE melts: MSDs averaged 

over all the monomers of a chain [g1(t); black], MSDs of monomers with respect to the center of 

mass of the chain [g2(t); dark green], and MSDs of the center of mass of the chain [g3(t); orange]. 
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Fig. S3 Probability distribution function of 
1/22

g g/R R  as function of chain length for 2D KG ring 

melts with kθ = 4. 
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  +- 

Fig. S4 (a) MSD of monomers with respect to center of mass of the chain [g2(t)] and (b) MSD of 

the chain center-of-mass [g3(t)] rescaled as ( ) 2
p/ig t l  as a function of Relax/τt for ring polymers in 

2D AMD system of R_600 (black circles) and 2D KG systems with Nb = 200 and kθ = 0 (dark-

yellow line), kθ = 3 (blue line), and kθ = 4 (orange line). 
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