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Simulation methodology

Atomistic molecular dynamics simulation

We simulated the monodisperse (unconcatenated @kmbtied) ring polyethylene (PE)
melts via atomisticanonical NVT) molecular dynamics (MD) method at constant terapee
= 450 K) and density (corresponding to the presBurel atm) by using the set of the equations

of motion, implemented with the Nosé—Hoover therap's®

qia = pia
M,
pia = I:ia - <-pia (1)
._ P _ P _ 2
¢=q P —sz——DNkBT , Q=DNk,TT

whereqia, pia, andFia are, respectively, the position, momentum, andgafectors of atora in
moleculei of masana. D denotes the dimensionality of the system kgithe Boltzmann constant.

N andV represent the total number of atoms and the vohiitiee system, respectively. and p,

are the coordinate- and momentum-like variablespeetively, of the Nosé—Hoover thermos@t.
is the mass parameter of the thermostat. The thetatieelaxation time parametewas set equal
to 0.12 ps for all simulationBhe set of equations of motion in the atomistic BiBulation were
numerically integrated using the efficient revelsiReference System Propagator Algorithm (
RESPA} with two distinct time scales: a short time scale0.47 fs for three bonded (bond-
stretching, bond-bending, and bond-torsional) adgons and a long time scale of 2.35 fs for
nonbonded intramolecular and intermolecular Lenndodes (LJ) interactions.
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The well-known Siepmann-Karaboni-Smit (SKS) unitgdm modeél was adopted for all
the atomistic simulations because of its broad eisagl accuracy for predicting structural and
dynamical properties of linear alkanes. In this elpdhe nonbonded intermolecular and

intramolecular interactions between atomic uniesdescribed by a standard 6-12 LJ potential:

U, (r) =4, [{%} _(%} ] )

whereg; = \/a andg; = (o, +a'j)/2 for cross interactions between atonandj by adopting
the standard Lorentz-Berthelot mixing rulgsis the distance between atonand;j. For the CH
united atom in ring polyethylene (PE) molecules, i energy parametet,, / ks was equal to
47 K, and the LJ size parametgy,, was equal to 3.93 A. A cut-off distance equal.x@,, was

used in all simulations. The intramolecular LJ iat¢ion was active only between atoms separated

by more than three bonds along the chain.

The bond-stretching interaction is described byrtoaic potential:
Usall) =201 )@

with the equilibrium bond length,, = 1.54 A and bond-stretching constdgt/k, = 452,900

K/A2. The bond-bending interaction is also applied dasea harmonic potential:
— kben 2
Unenane(8) ==52(6 -6, 4)

with the equilibrium bending anglé,, = 114 and bond-bending constaky,/k; = 62,500 K/



rac® based owan der Ploegt al.®. The bond-torsional interaction is governed byghtential by

Jorgenset al.:’
3
Utorsional(¢) = z a'm Co§n @ ) (5
m=0

with the bond-torsional constanég/k, = 1010 K, a,/k; = 2019 K, a, /k; = 136.4 K anda,/k;

=-3165 K.

The nearly 2D confined atomistic systems employethis study were constructed by
placing two simple rigid, repulsive walls which ity do not allow polymer chains to move out
of the boundary walls. This allows us to focus be general, fundamental characteristics of
polymeric systems under extreme confinement, withegard to the specific polymer-wall
interactions. The repulsive wall was described bg Weeks-Chandler-Anderson (WCA)

potential®
o 12 o 6
4e || Zw | | Zw |y e g < By
UL‘:| (r) = W {( r.iW j ( r.iW j } w w w (6)
0’ riw > 21/6 o-iw
wherea,, = 0o, 12, &,/k, =47 K, andr,, is the distance between atorand wall surface.

The system density was determined by additionahastic isothermal-isobaridcNPT) MD
simulations at constant temperatufe=(450 K) and pressur® & 1 atm) using the Nosé-Hoover

thermostat and barostat with their relaxation tpaeameters being set equal to 0.12 ps.



Coarse-grained Kremer-Grest (KG) simulation

NVT coarse-grained (CG) KG simulations of the monaslisp (unconcatenated and

unknotted) ring melt systems were conducted attaohgemperatur@ = £, / k; using Langevin

thermostat and a constant area for the strictlgy¥dems. The equations of motion for the position
vectors implemented with the Langevin thermostatGanonicalKG MD simulations are as

follows:
i, =F, =¥, +W,(t) (7)

wherer, andF; are the position and force vectors of beatespectively. The bead friction
coefficient was set a$ =0.5 Z';i at constant temperatur€ = ¢, /k; . W, (t) denotes the

Gaussian white noise source with zero mean at gdmtureT and satisfies the standard

fluctuation-dissipation relation for 2D systemsW, (t) (W, (t') >=49,d(t —t')IkgT .

The KG simulations were carried out with the foatgrmolecular, intramolecular, bond-
stretching, and bond-bending) interaction potesti&@hifted LJ (WCA) potential function is

applied to calculate intermolecular and intramolacinteractions between beads:

12 6
g, g,
4e Ke | —| =K | |+g ., 1,20
U||_<JG (r) - KG r.ii r KG ij KG

ij

(8)
0, r>2" 0,
where g, and €, are the LJ bead size and energy parameters,ctegde r; denotes the

distance between beatsndj. The cut-off distance is set as=2"° g, . The bond-stretching

interaction is described by the finitely extensib@nlinear elastic (FENE) potential:
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—%klen[l—(r” IR 1 <R,
00, ry = R

U EEGNE(r) =

(9)

with the maximum bond lengtR, =1.5 0, and bond-stretching constakit=30 £, /g¢s .0 I;

is the distance between the two neighboring beaaslj=i+1. The bond-bending interaction is

given by
U :eiding(ei) = k€[1 - Cosei ] (10)

with the bond-bending constakj =0, k, =3, andk, =4, and the bending angi between the

two consecutive bond vectobs =r; —ri4 and bis =risg —r; 1011



Supplementary Note 1

As shown in our previod%and present studies, polymer chains, when narrowjined
or at interfaces, intrinsically attain a certaigaee of chain stiffness. Fundamentally, this change
in chain flexibility stems from an entropic penaltyassociation with the reduction in available
chain configurational states by geometric constraifowever, the existing theoretical and
numerical models (e.g., the Rouse model and timelatd KG model) for dense 2D linear and ring
polymer systems are, as essentially similar tortbdels for the corresponding 3D systems, based
on the random walk or self-avoiding random walk {®Aof individual chain segments without
properly accounting for the naturally arising chaiiffness caused by dimensional restriction in
2D space. Accordingly, those theoretical analysset on random-walk chain models for 2D or
very narrowly confined systerfts-3are likely to result in physically incorrect resulFor instance,
the Rouse model and the standard KG model includmd@sennes’s analysis give rise to the
compact segregated chain configurations for 2D eotated polymer solutions or melts of
general flexible polymers, which is in sharp coditéon to the extended interpenetrated chain
configurations attained by our direct 2D atomissgnulations and available interfacial

experiments such as monolayer Langmuir polymersfithAlso, the atomistic results in Fig. 2

clearly refute the Rouse model prediction<5f>ng :<R§>Lmear/2 for 2D confined melt systems

of the same chain length. Further, the atomistituations exhibit a non-Gaussian probability

| for the 2D linear melt system3jn

ete

distribution P(|R.,|) of the chain end-to-end distan|&®,

stark contrast to the typical Gaussian behaviodipted by the random-walk based Rouse model

and standard KG model. In addition, while the agimisimulations show approximately a Rouse-

like scaling behavior witlty,,,,, ~ N?for the 2D linear and ring PE melts, they inval@ltite Rouse

elax



model prediction for the value éYRem)ng :(TReIax) Linear/4. Furthermore, as shown in Fig. 7, the
standard 2D KG model witky = O (without accounting for the naturally arisictrain stiffness due
to dimensional constraints) produce generally iseiant results for the main structural and

dynamical properties in comparison to those obthfram the direct 2D atomistic simulations.

In addition, as shown below, the direct 2D atornistimulations show some deviations for
scaling behaviors of structural and dynamical pridge in comparison to the theoretical results

by A. N. Semenov and A. JohfA&for monolayer linear polymer melts.

Semenov-Johner modél 2D atomistic resulf

<|§> N N 097008

L (perimeter monomer) N 0625 \ 082 0.03
Ds N 0875 N 0.6 0.04
1.875 1.92+0.1C

TReIax N N




Supplementary Note 2

Two-dimensional (2D) Rouse model for linear and ring polymers

Here we present a detailed analysis of the 2D Rmadel of linear and ring polymers.
The derivation is essentially similar to that of #torresponding three-dimensional (3D) md8el.
As standard, the effect of hydrodynamic interadianot included in this analysis, which thus,
based on the mean-field concept, refers to shemtamgled polymer melt systems. Each chain is

composed oN coarse-grained beads with an effective hydrodyodmnetion coefficient , which
are connected by Gaussisan springs of the equitiblengthb and spring constarK = 2kBT/b2
for 2D systems wherg; is the Boltzmaan constant aldhe temperature. The dynamics ofin

bead Rouse chain under equilibrium conditions eadzribed by the following Langevin eqation:

R ou
D=———+f (t) forn=12,--,N 11
{ ™ R, NQ) (11)

whereU represents the harmonic poetential energy of #ngs&san springs:
N -
2 :1

Here R, denotes the position vector of thitbead and, (t) is the random Brownian force exerted

on this bead. Thé (t) obeys the following eqations:
(f.(t))=0 (13a)
(o () frop (1)) = 20K T3, 0,,0(t ~t') fOr a,f=x,y (13b)

where J,,, is the Kronecker delta and(t —t') denotes the Direc delta function. Combining eqns



(1) and (2), we obtain this equation:

2
0R, _, IR

¢ ot on?

D+ (t) (14)

The boundary conditions for the 2D linear polymes as follows:

R,
on

_, OR,

: =0 15
n=0 an ( )

n=N

On the other hand, the boundary conditions fo2lbeing polymer are as follows:

3R,
RO:RN, W

_0R,
o 0N

(16)

n=N

To conveniently solve the Rouse model, we can eyniple normal coordinateX (t) and Y (t)

through
R,(t) =X, +i[2xp cos% W, sin{% % (17a)
p=1
X, (1) :%LN RJt)cos%)m forp=0,1,2 3 4 .. (17b)
Y, :%LN Rn(t)sin(%)oh forp=1,2,3, 4, ... (170)

Applying the boundary conditions (eqgn (5)) to e@a)( we find the following result for the linear

polymer:

R,M=X,+ Y {2xpcos$y X, sin{%% (18a)
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X, (1) :%ION R, (1) cos%)m forp=0,1,2,3,4, ... (18b)

Y, ()=0forp=1,2,3,4, .. (18c)

By applying the boundary conditions (eqgn (6)) ta €tg), we find the following result for the ring

polymer:

R,M=X,+ Y [2xpcos$)+ X sin{%% (19a)

X, (1) :%IONRn(t)cos%)m forp=0,2,4,6, ... (19b)
1 _prm _

Y, (1) _N'[O Rn(t)sm(T)oh forp=2,4,86,8, ... (19¢)

wherep;even in the summation represents only the epenodes, i.e.,p=2, 4, 6, 8--. Note that

all the odd modes should vanish for ring polymers.

In terms of the normal coordinates, the set oflthegevin equation (eqn (1)) for the 2D linear

polymer can be equivalently written as

X
2NE =2 =~k X, +1) (20a)
X :zjo”fn(t)cos% yah forp=0, 1,2, 3,4, ... (20b)

where
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4k, T

k, = NbZB p> forp=0, 1, 2, 3, 4, ... Y21
Using egn (3), we also find
(fX®)=0 (22a)
(£ (1) fs(t)) =4NCK,T3,,3,,0( ~t') for p#0orq# 0 (22b)
( os (1) o (1)) =BNCK,T 8,0t ~t') (22¢)
Solving eqgn (10a) foXp, we find
1 t 1 I I —
X, (t) :Wj._wf,f(t Jexp[ - ¢-t')r,|d' p=0,1,2,3,4, ... (23)
where
IN%? 1
= — forp=1,2,3,4, .. 4)2
o 2Pk, T p° orp X

Using egn (12), we then obtain

L
k

p

(X oo ()X 45 (0)) = 8y ys ~2—exp(~t /1) fOr pg=1,2,3, 4 (25)

Similarly, the set of the Langevin equation (eq)) {a@r the 2D ring polymer can be equivalently

written as

2N{

oX
2=k X, ) (26a)

0
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f =2J'0an(t)cos% Yoh forp=0, 2, 4,6, ...

oY, _ .
INZ =2 =k, Y, +f;

£ = 2j0an(t)sin(pT”“)m forp=2,4,86,8, ..

where

4K, T

k = 8_p®*forp=0,2,4,6,..

p NbZ
Using egn (3), we also find

<fpx(t)> :<f;(t)> =0

(£ T () =( () T (1)) =4NTK,T S, 8,,0( ~t') for p£0org# C

(fon () Top(t)) =8NCK,TE,,0(t ~t')
(X (1) fs(t))=0 for all p andg

Solving eqns (16a) foX, and (16c) forYp, we find

l i X f41 1 ] —_
><p(t):mj_mfp (t)exp[ - ¢-t')r,|d' p=0,2,4,86, ...
1 t Y 41 1 ] —
Yp(t)=m _fr(t)exp[ - t-t')yr,|d' pP=2,4,6,8, ..

where

13
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(26d)

(27)

(28a)

(28b)

(28c)

(28d)

(29a)

(29b)



{N%b* 1

2,4,6,8, 30
T kT pr L ¢
Using egn (18), we also obtain
k N _
(X o ()X 4(0)) = 8,,0,,—2—exp(~t Ir,) for pg= 0,2, 4, 6, (31a)
P
< L (Y, ﬂ(0)> 0qOup kk exp(—t Ir ) for pg= 2, 4, 6, (31b)
<Xpa(t) ﬁ(0)> 0 for all p andq (31c)

(a) Relaxtion time

According to eqn (14), the longest characterigtiaxation (Rouse) time for the 2D linear polymer
is therefore

B Zszz

T =1, =
Y2k, T

(32)

R,linear

Similarly, according to egn (20), the longest chteastic relaxation time for the 2D ring polymer

is

T =T _ N
R,ring 2= 8n_2kBT

(33)

We thus see that the Rouse time of the 2D ringrpetyis equal to one-fourth of that of the

corresponding 2D linear polymer, i.e. / 4, which is essentially the same as the 3D

erg leear
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Rouse model prediction for ring and linear polyniérs
(b) M ean-squar e chain end-to-end distance and ring diameter

Defining the chain end-to-end vector Rs,(t) = R (t) —R,(t) for the linear polymer, we obtrain

from eqn (8a) that

R =R, () -R()=—4 > [xp cos% )} (34a)

p=odd

(RulOR(0) =163 (X, 0)X, 0) cos &)

p;odd

= 22{ expet/T, )} (34b)
= Nb? Z exp(—t/ 7,)
(R =7 2 =’ (340)

wherep;odd in the summation represents only the pddodes, i.e.p=1, 3,5, 7--.

Defining the ring diameter vector &,(t) =R, ,,,(t)-R,(t) with n=1, 2,.-- ,N for the ring

polymer, we obtain from eqgn (9a) that

Ry() =R,p®-R M =-4 3 [chos% *Y, sin(%% (35a)

p=2,6,10,..
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=32 % {kBT exp&t/rp)} (35b)

> 1 _Nb
2—2: 2 (35¢)

Therefore, the mean-square ring diameter of a 89 c¢hain is equal to one-fourth of the mean-
square chain end-to-end of the 2D linear analoghgs. result is the same as that of the 3D Rouse

model for ring and linear polymers.

(c) Mean-squar e chain radius of gyration
N
In addition, we can also find the mean-square sadfugyration(R?) :%Z<(Rn - RG)2> with

the center-of-mass position vectRy, :%J'ON R, dn for 2D ring and linear polymers. From egn

(8b), it is seen thaXo is equal toR;. We then derive the following expression for theam-

square radius of gyration for the 2D linear polymer

16



=437 (x3) [} ancos &) (36)

:%pgmei”ON dnco¢ % )F<YpZ>ION ah sirt \% % (37)
2§ (p)+(v3)

It is thus seen that the mean-square radius otigyraf a 2D ring chain is equal to one-half that

of the corresponding 2D linear chain. This is aghgsame as the 3D Rouse model prediction for

ring and linear polymers.
(d) Diffusion coefficient

According to eqn (10a) for the 2D linear polymée tlynamics oiX, (=Rg) is governed by

17



X, _ 1 ox

ot 2N¢ ° (38)

X,(t) = xo(0)+j 2NZf ()’

Using egn (12c), we arrive at

(X (€)= Xgs () X 05 (1) = X 55 (0))

e en _ 2KT (39)
(ZNZ] H(foa(t)foﬂ(t ))dt'ct” = N7 3t

and thus

(Re)-R())’) = 4;; (40)

From the well-known Einstein equation for self-diffuy, the center-of-mass diffuison

coefficient D, for the 2D linear polymer is therefore found to be

(Rs®-RO)) i1

Dg o =lim 41
G,linear tow 4t NZ ( )
Similarly, based on eqgns (16a) and (16c), we fordtie 2D ring polymer that
Rs(t) =R (0))’
D ing = im (RO -ReOF) e (42)
e e 4t N

Therefore, the center-of-mass diffuison coefficiehthe 2D ring polymer is equal to that of the

2D linear analogue, which appears to be the samea®rresponding 3D Rouse model prediction.

Below summarized are the primary structural andadyical properties predicted by the
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Rouse model for the 2D linear and ring polymersomparison to the corresponding 3D analogues.

Linear Polymer (RZ.))

Ring Polymer <Rf>)

(Ree)/ (R2)
2
2D Nb? Nb~
4
2
3D Nb? Nb~
4
<R§> Linear Polymer Ring Polymer
2 2
20 N o
6 12
2 2
3 N o
6 12
TReiax Linear Polymer Ring Polymer
2D ¢ N%p? ¢ N%p?
2k, T 8k, T
3D IN?D? {N?b?
3k, T 12k, T
Dg Linear Polymer Ring Polymer
i (Re®-RO)) kT kT
2D =lim
(Dg =M i ) NJ Ng
{(Rs®-R:0)’) T T
3D (Dg =lim & ) NG Ng
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Supplementary Note 3

In comparison to those of the corresponding 3Desyst the key distinctive feature in the
MSDs of both ring and linear chains in 2D confimeelt systems is that chains in the 2D systems
tend to move as a whole with their monomers inrceded manner. This characteristic is closely
associated with the following distinct diffusiverdymics of the 2D melt systems compared to the
corresponding 3D systems: (a) the monomeric MSiE$) [andgo(t)] are not much larger thap(t)
at short-to-intermediate time scales for the 2Desyis, which is in sharp contrast to those for the

3D system, (bp(t) andgs(t) for the 2D systems cross each other at a mudi eare before

reaching the<R§>-Iength scale, unlike for the 3D system, (c) therall faster diffusive motion of

the 2D chains in comparison to the corresponding@B8logues, which is also influenced by the
absence of complex topological constraints betwawains (i.e., interchain entanglement and
mutual ring threading) in the 2D systems, and l{d)dignificantly diminished dynamic role of the
chain ends of the linear polymer results in theralguantitatively similar dynamic behaviors of
the MSDs §u(t), g2(t), andgs(t)] between 2D ring and linear chains, in spiteh# tifference in

their intrinsic molecular architectures, whichnsstark contrast to those for the 3D system.

We further note that the general diffusive mecharid chains in the 2D systems is quite
distinctive from that of the 3D systems; i.e., 2D chains, with frequent stretching out or coiling of
the chain-end segments, often fold back to theivipus chain contour due to the spatial blockage
by other adjacent chains, leading to a narrow, neldd double-stranded local segmental

conformation.
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Description of supplementary movies

2D Linear PE C yHgg2 2D Ring PE C yoHggo

" p=0.532g/cm?, T = 450K, " p=0541g/em®, T = 450K,
Movie length = 10 ns Movie length= 10 ns

3D Linear PE CyooHso2 3D Ring PE C5oHs00

p=0.764g/cm?, T = 450K, " p=0.764g/cm>, T = 450K,
Movie length = 10 ns Movie length = 10 ns

Movie S1 Chain dynamics for 2D and 3D L_400 PE melts (lafty) R_400 PE melts (right) from

atomistic molecular dynamics simulations.
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Movie S2 Dynamics of a randomly selected chain for 2D

dynamics simulations.
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R 600 PE melt from atomistic molecular

Movie S3 Dynamics of a randomly selected chain for 2D

dynamics simulations.
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Fig. S1 Rescaled mean-square chain end-to-end distance <R’_>/N_ of polymer chains as

functions of chain length for 2D (black) and 3D (green) linear PE melts on a log—log plot. The data

for the 2D and 3D linear systems were obtained from ref. 15.
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Fig. S2 The MSDs for 2D (dash-dot lines) and 3D (dotteed) R_600 PE melts: MSDs averaged
over all the monomers of a cham(t); black], MSDs of monomers with respect to theteeof

mass of the chaimgj(t); dark green], and MSDs of the center of mas$iefchain §i3(t); orange].
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Fig. S3 Probability distribution function oR, /<R§>u2 as function of chain length for 2D KG ring

melts withky = 4.
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Fig. $4 (a) MSD of monomers with respect to center of masfefahain (t)] and (b) MSD of

the chain center-of-masgs(t)] rescaled ag, (t)/ Ij as a function ot / 7, for ring polymers in

2D AMD system of R_600 (black circles) and 2D KGtgyns withN, = 200 andky = 0 (dark-

yellow line), ks = 3 (blue line), an#ly = 4 (orange line).
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