Supporting Information

for

Quantitative insights into tightly and loosely bound water in hydration shells of amino acids

Yutan Shen,^{ab} Lu Liu,^c Qiancheng Zheng,^c Xi Zhao,^c Yuchun Han,^{*a} Qianjin Guo^{*d} and Yilin Wang^{*ab}

^aCAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China ^cInstitute of Theoretical Chemistry, Jilin University, 130012, P. R. China ^dKey Laboratory of Molecular Reaction Dynamics and Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Fig. S1. DSC melting heat flow curve of pure water

Fig. S2. DSC melting curves of 20 amino acids and water mixtures in the W_C range of 0 to 8

Fig. S3. The change curves of the T_{onset} and ΔH_{w} values against W_C for different amino acids

Fig. S4. Linear dependencies of the normalized melting enthalpy changes on the W_C for 20 amino acids

Fig. S5. Raman SC spectra of six amino acid aqueous solutions

Fig. S1 DSC melting heat flow curve of pure water. The onset transition temperature (T_{onset}) and the obvious melting enthalpy change (ΔH_{obs}) of pure water are shown in the figure (T_{onse} = 0.28 °C, ΔH_{obs} = 334.5 J/g).

Fig. S2 DSC melting heat flow curves of 20 amino acids and water mixtures in the W_C range of 0 to 8. The curves of Gln, Phe and Trp are shown in the lowest panel, and their heat flow curves are almost unchanged in the W_C ranges of 0 to 8.

Fig. S3 The change curves of the T_{onset} and ΔH_{w} values against W_{C} for different amino acids. (a) Onset transition temperature (T_{onset}) values of amino acids and water mixtures against W_{C} for different amino acids. (b) Melting enthalpy ΔH_{w} values (normalized to the water weight) of water molecules against W_{C} for different amino acids.

Fig. S4 Linear dependencies of the normalized melting enthalpy changes on the W_C for 20 amino acids. The melting enthalpy changes (ΔH_m) are normalized to the amino acid weight, and plotted as a function of water content (W_C) of amino acids. The x-intercept represents the amount of tightly bound water. The negative x-intercept values of Phe, Trp and Gln are shown in the lowest panel.

Fig. S5 Raman SC spectra of six amino acid aqueous solutions. Raman SC spectra of 0.10 M Lys (a), 0.10 M Arg (b), 0.05 M Trp (c), 0.10 M His (d), 0.05 M Gln (e) and 0.10 M Asn (f), and the Raman spectra of their corresponding dry amino acid samples (black, dash) are also presented for comparisons.