
Supporting information:

Multiscale Simulations of Polyzwitterions in Aqueous Bulk

Solutions and Brush Array Configurations

Aristotelis P. Sgouros,
1
 Stefan Knippenberg,

2
 Maxime Guillaume,

2†

and Doros N. Theodorou
1*

1
School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou

Campus, GR-15780 Athens, Greece.

2
Solid State Battery Applicability Laboratory, Solvay SA, 310 rue de Ransbeek, B-1120 Brussels, Belgium

† E-mail: maxime.guillaume@solvay.com
*
 to whom correspondence should be addressed. E-mail doros@central.ntua.gr, Tel. +30 210 772 3157,

fax +30 210 772 3112

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2021

mailto:doros@central.ntua.gr

2

Contents

S1. OPLS COEFFICIENTS .. 3

S2. DETAILS ABOUT THE MESOSCOPIC POLYMER BUILDER PYMESO ... 5

S2.1. INTRODUCTION ... 5

S2.2. SETUP ... 5

S2.3. CHAIN RECONSTRUCTION ... 6

S2.4. REVERSE SAMPLING .. 8

S3. AUTOCORRELATION FUNCTION OF THE TANGENTIAL COMPONENTS OF THE END-TO-END

VECTOR .. 9

S4. BRUSH-THICKNESS SCALING ARGUMENTS FOR FINITELY EXTENSIBLE CHAINS IN A THETA

SOLVENT .. 10

S5. NONERGODIC ANGLE DISTRIBUTIONS ... 15

S6. CALIBRATION OF THE BONDED COEFFICIENTS .. 16

S7. OPTIMIZATION OF THE NONBONDED COEFFICIENTS ... 20

S8. DETAILS ABOUT THE BAYESIAN OPTIMIZATION .. 21

REFERENCES .. 25

Equation Section (Next)

3

S1. OPLS coefficients

The present section contains the modified OPLS coefficients derived from references 1,2. Any

unspecified coefficient corresponds to the original OPLS parameters.
3

Tables S1 and S2 depict the coefficients of the harmonic bonds [Vbond(r) = kbond(r – l0)
2
], and

harmonic bond angles [Vangle(r) = kangle(θ – θ0)
2
].

Table S1. Coefficients of the harmonic bonds.

class1 class2 l0 (nm) kbond (kj/mol/nm
2
) reference

S2 O2 0.144 585760 2

S2 CT 0.181 185770 2

Table S2. Coefficients of the harmonic angles.

class1 class2 class3 θ0 (rad) kangle (kj/mol/rad
2
) reference

C S2 O2 2.076942 870.27 2

C S2 CT 1.900664 619.23 2

C CT S2 1.895428 418.4 2

C_2 CT S2 1.911136 292.18 2

Table S3 illustrates the coefficients of the dihedral angles, as described by the Ryckaert-Bellemans

potential:

    
5

dih

0

cos
n

ijkl n ijkl

n

c 


 
 V (S1)

using the convention, ψ = υ – 180°.

Table S3. Coefficients of the dihedrals. ci are in units kJ/mol.

class1 class2 class3 class4 c0 c1 c2 c3 c4 c5 reference

CT CT CT S2 3.9246 –3.925 0 0 0 0 2

CT CT CT HC 0.7322 2.1966 0 0 0 0 2

Alternatively, the dihedral coefficients can be expressed through the Fourier description of the Ryckaert-

Bellemans function:
4

4

            rb 1 2 3 4

1
1 cos 1 cos 2 1 cos 3 1 cos 4

2
K K K K            V (S2)

The conversion among ci and Ki has as follows [see ref 5, p. 361]:

 

 

0 2 1 3

1 1 3

2 2 4

3 3

4 4

5

1

2

1
3

2

4

2

4

0

  

  

  

 

 



c K K K

c K K

c K K

c K

c K

c

 (S3)

Finally, Table S4 depicts the coefficients of the nonbonded dispersive Lennard-Jones interactions,

  12 6

LJ 4 [(/) (/)]V r r r    , and the charges that tune the electrostatic interactions, coul  i jE Cq q r ,

where C is an energy conversion constant and ϵ is the dielectric constant.

Table S4. Coefficients of the nonbonded interactions.

Type name class element m (g/mol) q (e) σ (nm) ε (kj/mol) reference

opls_O2_SPE O2 O 15.9994 –0.755 0.296 0.7113 q from ref 1

opls_S2_SPE S2 S 32.06 1.3193 0.355 1.046 q from ref 1

opls_288_SPE opls_288_SPE N 14.0067 0.1057 0.325 0.71128

q modified slightly to

conserve charge for SPE

5

S2. Details about the mesoscopic polymer builder PyMeso

S2.1. Introduction

The mesoscopic configurations were generated using the PyMeso polymer builder, which was

developed for the purposes of the present work. The builder generates the topology of the chains based

on repeating units that have been defined by the user. The chains are reconstructed across a user-

specified domain (either periodic or aperiodic) via a Monte-Carlo reverse sampling scheme. The

polymer builder is generic, has been designed under the object-oriented programming paradigm in

Python3.8, and supports polymeric chains of arbitrary chemical constitution and architecture (with the

exception of loop topologies such as ring polymers). The final topology is extracted in the format of

LAMMPS data files.

S2.2. Setup

Initially, the program requires the definition of the bead, strand and angle types, and their corresponding

coefficients:

 Beads. id, mass, charge

 Strands. pair of bead types it connects, coefficients (stiffness and equilibrium length).

 Angles. triplet of bead types, coefficients (stiffness and equilibrium angle).

Using the bead and strand types defined previously, the user can create one or multiple kinds of

repeating units in terms of the constituent bead/strand types, the internal topology (e.g., pairs of

connected beads), and the head/tail of the repeating unit; i.e., the first/last bead. Note that, in case the

repeating unit does not have a head/tail, it is treated as a single molecule; e.g., a water bead.

The repeating units can then be connected together and form ―groups of repeating units‖; i.e.,

chains. The connection of two repeating units implies that the head of the former is connected to the tail

of the latter, and that the ids of the beads included in the new repeating unit are renumbered accordingly.

By taking advantage of the operator overloading function, the connection of one or more repeating units

with each other can be performed seamlessly via the ―+‖ and ―*‖ operators. For example, let there be

two simple repeating units denoted as ―A‖ and ―B‖, which comprise a single bead that is marked both as

the head and tail of the repeating unit. In order to construct an ―AAAABABA‖ group (we’ll call it

6

chain_4A2BA) we could either connect the aforementioned repeating units sequentially via the ―+‖

operation:

chain_4A2BA = A + A + A + A + B + A + B + A

or we could take advantage of the ―*‖ operator:

chain_4A2BA = 4 * A + 2 * (B + A)

Last, having specified all the required chains/molecules, the code requires the number of each chain kind

to be included in the system, as well as the system dimensions and periodicity.

S2.3. Chain reconstruction

As soon as the required parameters have been specified, the algorithm will iterate over all groups (chains

or molecules) included in the system and attempt to insert them one at a time. The builder utilizes a

three-state reaction-like process to reconstruct the chains, in which the beads are categorized into the

following states:

i) reacted, beads that have already been inserted in the system

ii) react_next, beads that are going to be inserted in the next iteration

iii) unreacted, beads that have not been inserted yet

At each iteration, the beads that have been labeled as react_next are inserted in the system and their state

changes to reacted. In addition, the algorithm searches for the neighboring unreacted beads and changes

their state to react_next. The aforementioned process is repeated until all beads of the group have been

inserted to the system (i.e., they have been assigned the reacted state). Figure S1 illustrates

schematically the reaction process regarding the insertion of an A(B)-C(DE)-FG chain.

7

Figure S1. Schematic illustration of the insertion of an A(B)-C(DE)-FG chain. Solid circles depict beads that

have been inserted in the box, circles with dashed contours indicate beads that will be inserted in the next

iteration, and circles with dotted contours denote beads that have not been considered for insertion yet.

The placement of the beads across the simulation domain is performed as follows:

 The first reacted bead is placed at a random point, r1, within the specified domain of the simulation

box.

 The second reacted bead is placed randomly on the surface of a sphere which is centered at r2 and

has radius r12. The radius of the sphere, r12, is obtained by reverse sampling from the theoretical

strand-length distribution corresponding to a type-t1t2 strand, with ta denoting the type of bead with

id a. Details about the reverse sampling procedure are illustrated in section S2.4.

 The insertion of the remaining beads requires a more complicated procedure. Suppose that the

bead to be inserted has been assigned the id i, and that the ids of its first and second reacted

neighbors are j and k, respectively. Based on the types of these beads we can obtain the length rji =

||rji|| = ||ri – rj|| of the new tjti-type strand, and the value, θijk, of the new titjtk-type angle via reverse

sampling. Therefore, we have to place the new bead in the system in a way that forms a strand with

length rji and an angle θijk with respect to its neighboring reacted beads, j and k. The new vector rji

8

can be formed by rotating the unit vector eij = rjk /||rjk|| with respect to a random rotation axis that is

orthogonal to vector rjk and passes from rj; the present implementation does not support dihedral

angles and thus is dihedral angle is set to a random value. Subsequently, the rotated unit vector can

be scaled with rji, and thus form the new strand. The rotation of the vector is performed using the

quaternion multiplication method which is very efficient and avoids problematic gimbal lock

situations as happens with the conventional Euler angle method.
6

In situations where the coordinates of the new bead lie outside the accessible domain (i.e., due to

enforcing aperiodic boundary conditions) the move is rejected and the insertion is reattempted.

S2.4. Reverse sampling

The strand-length distribution, f(r), of a strand with free energy U(r) (e.g., 2

0() ()U r r r  for

harmonic strands) can be calculated via Boltzmann inversion as follows:

   2

B

()
4 exp

U r
f r C r

k T


 
    

 
 (S4)

with C being a normalization constant. By integrating eq S4 we can calculate the cumulative probability

distribution function,

  
0

() d

r

F r u f u  (S5)

The inverse cumulative distribution function, F
-1

(x),  0,1x , can be calculated by inverting F, either

numerically or analytically. In order to reverse sample from the aforementioned distribution we have to

evaluate F
-1

(u) with u being a random variable which is sampled from the homogeneous distribution

across the interval [0, 1].

The exact same procedure can be repeated for performing reverse sampling from angle

distributions, with the difference that,

 

angle

B

1 ()
() exp

sin

U
f C

k T






 
    

 
 (S6)

9

S3. Autocorrelation function of the tangential components of the end-to-

end vector

Figure S2. Time-autocorrelation function of the tangential components of the end-to-end vector,

   ete, end graft end graft
ˆ ˆx x x y y y   R , with αend/αgraft denoting the coordinate of the bead at the end/start of the

grafted SPE chain along direction α={x, y}. In all cases the length of the grafted chains is NSPE = 5.

10

S4. Brush-thickness scaling arguments for finitely extensible chains in a

theta solvent

We consider a brush of finitely extensible chains of surface grafting density
g . Each chain is N

statistical segments long. The segment size will be denoted as a. In this simple analysis, a is taken as a

measure of both the statistical segment length (Kuhn length) and the diameter of a segment. The

temperature is T. The brush is surrounded by a solvent, which is assumed to be a Θ solvent under the

prevailing conditions. We wish to derive a scaling relation for the brush height, hg, as a function of N

and σg.

We adopt a simplified argument based on the work of Kuznetsov and Chen
7
 for the brush in a

theta solvent. The Helmholtz energy per chain, A, is envisioned as consisting of a (solvent mediated)

interaction and an elastic contribution:

 int elA A A  (S7)

For the interaction contribution we invoke the Alexander picture of a homogeneous gas of segments in

the brush region. The volume of fraction of segments is (see also p. 681 in ref 8):

33
g

g
g

g

volume of chain segments

1volume per chain

NaNa

h
h






   (S8)

The interaction free energy is expressed through a virial expansion. Under Θ conditions the second virial

coefficient is zero and the leading term in the expansion is the third virial term. In the following, all

equalities should be understood as rough, omitting multiplicative factors of order 1.

  g3int

3

B B g

Free energy density (volume per chain) hA w

k T k T a



  (S9)

with w being a dimensionless third virial coefficient for solvent-mediated interactions among the

segments. In the Kuznetsov-Chen paper,
7
 w is called υ.

Combining eqs S8 and S9:

11

3
3 6 3 2

g g gint

3 2

B g g g

Na h wa NA w

k T a h h

 



 
   

 

 (S10)

The elastic (entropy spring) contribution due to stretching is typically expressed based on a Gaussian

chain picture (Hookean spring),

2

gel

2

B

hA

k T Na
 . Kuznetsov and Chen have modified this expression to

include the finite extensibility of the chain in the following manner:
7

2 2

g gel

2 2 2
g gB

1

1 1

h hA N

h hk T N a Na

Na Na

 

 

 (S11)

For collapsed chains in a poor solvent, Kuznetsov and Chen append to eq S11 an additional,

confinement entropy term of the form
2

2

g

Na

h
. We will not include that term here.

From (S7, S10, S11) the total reduced Helmholtz energy per chain is

6 3 2 2

g g

2 2
gB g

1

1

wa N hA

hk T h Na

Na


 



 (S12)

At equilibrium, this should be minimized with respect to hg:

12

B

6 3 2 2

g g g

23 2 2
gg g

6 3 2 2

g g g

23 2 2 3
gg g

7 3 2 2

g g g

23 2 2
gg g

3

g4 2

g

g

0

1 1 1
0 2 2

1 1

1 1
0 2 2

1 1

1 1
0 2 2

1 1

0 2 2

A

h k T

wa N h h

hh Na Na Na h

Na Na

wa N h h

hh Na N a h

Na Na

wa N h h

hh Na N a h

Na Na

hNa
wa

h









 
  
  

    
   
 

    
   
 

    
   
 

 
    

 

2

g

2

g
g

1 1

1 1

h

hNa Na h

Na Na

   
   

             
    

 (S13)

Setting,
gh

Na
  , eq S13 is rewritten as,

 

 

 

4 2 2

g 23

2 2
4 2

g 23

2
4 2

g 23

4
4 2

g 2

1 1 1
0 2 2

1 1

1 2 2
0 2

1

1 2
0 2

1

(1 / 2)

(1)

wa

wa

wa

wa

  
  

  


 

 


 

 




    
 

 
   




   








 (S14)

So, the scaling analysis leads to

4

4 2

g 2

(1 / 2)

(1)
wa

 








 (S15)

13

For weak stretching, 1 , eq S15 leads to:

4 2 4

g

1/4 1/2

g

g 1/4 1/2

g

wa

w a

h
w a

Na

 

 



 

 



 (S16)

or

1/4 2 1/2

g gh w a N (S17)

which is the classical scaling result for a Θ solvent,
1 1/2

g g~h N  .

When considering stretched brushes, (large ), the full right hand side of eq S15 is retained, and

we have a functional relation between
1/2 2

gw a  and β, which is plotted in Figure S3.

Figure S3. The functional dependence between
1/2 2

gw a  and β = hg/(Na) according to eq S15. The dotted line

depicts the value of hg/Na for which the scaling exponent of σg becomes 1/5.

According to this simple model, the scaling exponent for the dependence of hg on N is always 1. The

scaling exponent for the dependence of hg on σg, however, varies. At low stretching of the brush (weak

14

third virial coefficient interaction) it is 1/2. At high stretching, however, it can be 1/5 or lower. Similar

response has been reported for good solvents as well, wherein the scaling exponent of the grafting

density can decrease significantly relative to its classical value of 1/3 in situations with enhanced

orientation and chain stretching.
99,101

It is worth mentioning that the aforementioned model breaks down in the limit of low
g and N

(mushroom regime), where the chains cannot interact with each other and the brush thickness becomes

independent of σg. Therefore, the behavior of the brush in terms of the scaling exponent of σg (let’s call

it n) can be classified into three regimes: i) mushroom regime, n = 0; ii) intermediate regime, n = 1/2; iii)

stretching regime, 0 ≤ n < 1/2.

The effective segment size can be estimated for our SPE brushes in terms of the following

equation:

 sin(/ 2)a l  (S18)

with  being the angle among three consecutive backbone beads, and l being the length of a backbone

bond. Setting SB-SB-SB 2.47 rad   and l = lSB-SB = 0.3 nm (see Fig. 10 in the main text) we get a

rough approximation for the effective segment length along the direction of the chain contour, aSPE =

0.28 nm. Note that the actual SPE chains feature large side groups that would lead to anisotropic aSPE

along the tangential directions with respect to the chain contour; these complications will be not taken

into account here. For the dense brushes considered here we get hg /(NSPE aSPE) ~ 0.6, which is certainly

in the domain n < 1/2, in reasonable agreement with the analytical scaling model considered here, given

its simplicity.

15

S5. Nonergodic angle distributions

Figure S4. Strand-angle distributions of the inner SB-SB-SB triplets of SPE8 chains; the angles at the chain ends

are omitted. (a) Distributions from single MD simulations at T = 300 K. (b) Distributions based on the 120

temperature-annealed configurations. The inset in (a) depicts the backbone beads of an SPE8 chain.

16

S6. Calibration of the bonded coefficients

Before discussing the calibration procedure, we first have to define the total objective function that

quantifies the performance of the input set of bonded coefficients (strand or angle) as well as the partial

objective functions that quantify the performance of individual sets of bonded coefficients in terms of

reproducing the target bonded distributions. Since we deal with Gaussian strands and angles, the input

set of coefficients can be defined as    , , strand and angle types     k where (kα, μα) = (kstrand,α,

l0,α) when referring to kind-α Gaussian strands, and (kα, μα) = (kangle,α, θ0,α) when referring to kind-α

Gaussian angles.

The total objective function takes as an input the full list of the bonded coefficients of the strands

and angles we wish to optimize, and outputs the overall performance of the full set of input coefficients

in terms of the total R-square measure, which is defined as follows:

 

2 2

total

strand + angle types

 


 
a

R w R (S19)

where
2

R constitutes the partial objective function; i.e., an R-square measure that quantifies the

goodness of the fit of individual, kind-α bonded coefficients with their corresponding target

distributions, with α denoting a specific strand or angle type. wα is the weight ascribed to
2

R for a

specific type; in our implementation wα = 1, thus, all strands and angles were weighted equally.

The partial objective function,
2

R is defined as follows:

2 SSE

1
SST






 R (S20)

with SSEα being the sum of squared estimate of errors:

     
max 2

sim target

0

SSE  


 
i

i

f i f i (S21)

SST being the sum of squares about the mean,
sim

f :

17

     
max 2

sim sim

0

SST  


 
i

i

f i f i (S22)

where
sim

f is the mean of the distribution, and  sim

f i and  target

f i denote the value of the simulated

and target bonded distributions at the i
th

 discrete bin that denotes a specific strand-length/angle when

referring to strand/angle distributions. Note that, the way
2

R has been defined, a value close to unity

corresponds to a good fit between the simulated distribution and the target one, whereas lower values

indicate bad fit.

The algorithm requires the following inputs to run:

1. The parameters of the target distributions to be replicated. Since we deal with Gaussian

distributions, their corresponding mean, μα, and standard deviation, σα, are required.

2. Initial guesses for the bond and angle coefficients to be optimized. These can be set to the

coefficients derived via the initial Boltzmann inversion.

During the initialization phase, the algorithm performs an evaluation using the initial set of bonded

coefficients and stores the corresponding
2

R and
2

totalR , as well as the set of the initial coefficients to a

list, which we will call Lext.

Note that, each ―evaluation‖ performed by the algorithm entails the following steps: i) a fresh DPD

simulation based on the input set of bonded coefficients (Lext or Lint) and in the presence of the full

nonbonded interactions, for a duration of 1500 τDPD; ii) post-processing of the trajectories in order to

derive the bonded distributions of individual strands/angles; iii) calculation of the total and the partial

objective functions via eqs S19 and S20.

Subsequently, the bonded coefficients are calibrated based on a two-level Monte Carlo (MC)

optimization procedure:

Internal level. Across this level, the algorithm attempts to optimize the individual bonded

coefficients for ninternal internal MC iterations in a way that maximizes their individual performance of

the strands/angles, as quantified by the partial
2

R . In other words, the individual strands and angles are

treated as being decoupled; i.e., it is assumed that a perturbation to a kind-α bonded distribution does not

affect the distributions of the other kinds of bonded distributions. Note that, during the internal iterations

18

the external list, Lext, remains unaffected, whereas any adjustments are stored in a copy of this list,

which we will call Lint from here on. At the start of each internal iteration, the coefficients of the bonded

interactions are adjusted simultaneously based on the following relations:

   max1 1,1      k k k U (S23)

   max1 1,1         U (S24)

and

21   R (S25)

where Δkmax and Δμmax denote the maximum change in strand/angle stiffness and mean, U(–1,1) is a

function that samples from the uniform distribution across the interval (–1, 1), and λα is a relaxation

quantity whose magnitude depends on the accuracy of the fit. Note that, as the fit improves,
2 1 R ,

0  , and as a result the perturbations in kα and μα become minor; i.e., convergence is achieved

Subsequently, the algorithm performs an evaluation based on the set of the adjusted bonded coefficients,

   , , strand and angle types      k , and it computes the new partial objective functions,
2


R , via

eq S20. At the end of each internal iteration, the adjustments to individual bonded coefficients (internal

MC step) are accepted/rejected based on the following criterion:

 If
2 2

 
 R R , the adjusted coefficients are accepted and the corresponding coefficients in list

Lint are updated:    , ,     k k

 If
2 2

 
 R R , the adjusted coefficients are rejected and thus corresponding coefficients in list

Lint are maintained.

External level. After ninternal iterations, the algorithm performs an evaluation based on the list Lint, and

based on the new value of the total objective function,
2

total
R , it accepts/rejects the series of internal MC

moves as follows:

 If
2 2

total total
 R R , the series of internal MC moves is accepted and the external list of coefficients is

replaced by the internal one; Lext → Lint.

19

 If
2 2

total total
 R R , the series of internal MC moves is rejected, and the external list of coefficients

remains unaffected.

The algorithm cycles between the internal and external levels until convergence is achieved. The

parameters of the optimizer were set to max max 0.5   k , (in DPD units), and ninternal = 5.

20

S7. Optimization of the nonbonded coefficients

The objective function takes as input the list of DPD nonbonded coefficients, aij, and outputs the mean

sum square error (MSSE) between the DPD and MD partial pair distribution functions. In detail, the

workflow inside the objective function is the following:

1. Generation of a LAMMPS script based in the input list of aij.

2. Generation of a fresh initial configuration

3. Simulation of the sample with an initial equilibration of tequil = 500 τDPD, and a production phase

which lasts for tprod = 10000 τDPD, during which the trajectories of the DPD beads are recorded at

time intervals of Δt = 2 τDPD.

4. Calculation of the partial pair distribution functions, gij, from the corresponding trajectories.

5. Calculation of the sum square error between the gij from MD and DPD and averaging of it over

all pairs (excluding water-segment gij):

  
max

2
DPD MD

pairspairs 0

1
MSSE d () ()

r

ij ij

ij r

r g r g r
n  

   (S26)

The following Figure S5 depicts ~8000 evaluations (~5000 uniformly random bounded evaluations +

~3000 Bayesian interpretations) of MSSE sorted from higher to lower. MSSE appears to be quite

sensitive to the input list of nonbonded coefficients and spans several orders of magnitude.

Figure S5. Evaluations of the objective function sorted from higher to lower values.

21

S8. Details about the Bayesian optimization

Bayesian optimization (BO) is a machine-learning-based optimization procedure which can be used to

trace the global minimum/maximum of a (preferably) continuous objective function, f(x), dxR , such

as the one described in section S7. BO offers distinct advantages as compared to conventional

optimization algorithms:
9,10

 It supports black box functions; i.e., functions with opaque implementations and unknown inner

structure.

 It does not require access to the derivative of f; i.e., it is a derivative-free method.

 Efficient optimization of expensive objective functions (time- / resource-wise).

 It traces the global minimum/maximum by exploring regions far from local minima of f.

 It supports multi-dimensional objective functions; albeit the algorithm becomes inefficient when

the number of dimensions becomes greater than 20.
9

 It can be tuned to tolerate stochastic noise.

In practical terms, the algorithm performs ―educated guesses‖ for where a minimum/maximum of the

objective function exists, based on the previous function evaluations.

 The main components of a Bayesian optimization algorithm are the following:

1. Surrogate function. Estimates the value and the uncertainty of the objective function across

the parameter space.

2. Acquisition function. Interrogates the surrogate function in order to sample the next point to

be evaluated by the objective function.

The surrogate function is modeled via Gaussian Process (GP) regression and describes the

objective function at each point
dx R by attributing a mean value   x and a variance  2 x .

According to Ref 9 we can construct the surrogate function as follows:

Let there be a vector [f(x1), f(x2), .., f(xn)] which contains the evaluations of the objective function

at points (x1, x2, .., xn); using a more compact notation we will refer to the aforementioned quantities as

f(x1:n) and x1:n, respectively. Assuming that the evaluations f(x1:k) were drawn randomly from some prior

probability distribution, f(x1:k) can be described by a GP as follows:

       1: 0 1: 1: 1:~ , ,k k k kf Kx x x xGP (S27)

22

with mean

    0 1: 1:k kf    x xE (S28)

and covariance matrix

            1: 1: 1: 0 1: 1: 0 1:,k k k k k kK f f     x x x x x xE (S29)

with E denoting the expectation function. Note that  1: 1:,k kK x x has been expressed in compact

notation as well and describes the k × k matrix:

          1: 1: 1 1 1 1, , , . . . , , ; . . . ; , , . . . , ,k k k k k kK K K K K   x x x x x x x x x x (S30)

The covariance is estimated by evaluating a kernel for each pair of observations. Kernels are positive

semi-definite functions and indicate the correlations among neighboring observations across the

parameter space;  ,i jK x x increases/decreases between inputs at small/large distances,
ij j ix  x x ,

across the input space.

Having defined a prior distribution based on the previous—supposedly noiseless—evaluations, we

can perform a Bayesian inference at any point,
dx R , using Bayes rule:

likelihood × prior

posterior =
marginal likelihood

 (S31)

Following the derivations in Refs 9,10, the surrogate function (i.e., the Bayesian posterior probability

distribution) can be estimated as the product, likelihood × prior, by the following GP :
9,10

         2

1, ~ ,n n nf f  x x x xGP (S32)

where

           

         

1

1: 1: 1: 1: 0 1: 0

12

1: 1: 1: 1:

, ,

, , , ,

n n n n n n

n n n n n

K K f

K K K K

  







    

 

x x x x x x x x

x x x x x x x x x
 (S33)

A commonly used kernel is the Gaussian one:

23

  
2

2

f 2
, exp

2

i j

i jK
l


 
  
 
 

x x
x x (S34)

with l being the length scale of the process, and σf controlling the overall variance. Another common

kernel (which is used in the implementation by Nogueira
11

) is the Matérn kernel:

  
 

   
1

0

2
, 2 2

v v

i j i j v i jK K
v

  


  


x x x x x x (S35)

with  denoting the gamma function, Kv being the modified Bessel function, and v and 0 being the

parameters of the kernel.

There are several implementations of the acquisition function, each one characterized by an

―exploration vs. exploitation tradeoff‖.
12

 A common implementation for the acquisition function is the

Expected Improvement (EI) scheme, which—as its name suggests—returns the point which yields the

maximum expected improvement. The expected improvement at points lying in unexplored regions can

be high, since the uncertainty is high in these regions as well. In addition, the expected improvement

near quality points can be high as well; though the expected improvement right at points that have been

already evaluated is zero, by definition (assuming we are dealing with a noise-free objective function).

The above highlights the advantages of Bayesian optimization as compared to conventional optimization

methods, in that it attempts to reach a global optimum by improving the quality of the solution while at

the same time enhancing our knowledge about the objective function by favoring the exploration of

unexplored regions.

The flowchart in Figure S6 depicts the basic structure of a Bayesian optimization algorithm.

During the initial warm-up phase of the optimization, the objective function is evaluated ninit times in a

predefined domain (e.g., a grid across the
dR parameter space) or uniformly randomly across the

imposed bounds. Subsequently, the algorithm enters the cycle of the Bayesian optimization procedure.

At each step, the surrogate function is updated based on the previous evaluations of the objective

function. Subsequently, the surrogate function (which is relatively cheap to evaluate) is interrogated by

the acquisition function based on certain criteria depending on exploration vs exploitation tradeoffs
12

 in

order to retrieve the next point to be evaluated by the objective function. As soon as the maximum

24

iterations have been achieved the algorithm returns the maximizer of the objective function, f(xmax), or

that of the posterior mean,  maxn x .

For a more detailed explanation about the Bayesian optimization algorithms the reader is referred

to references 9,10. Further details regarding the implementation used in the present work can be found in

ref 11.

Figure S6. Flowchart of a basic Bayesian optimization algorithm

25

REFERENCES

(1) Shao, Q.; He, Y.; White, A. D.; Jiang, S. Difference in Hydration between Carboxybetaine and

Sulfobetaine. J. Phys. Chem. B 2010, 114, 16625–16631.

(2) Yamanaka, T.; De Nicola, A.; Munaò, G.; Soares, T. A.; Milano, G. Effect of the Ligand’s

Bulkiness on the Shape of Functionalized Gold Nanoparticles in Aqueous Solutions: A Molecular

Dynamics Study. Chem. Phys. Lett. 2019, 731, 136576.

(3) Klein, C.; Summers, A. Z.; Thompson, M. W.; Gilmer, J. B.; McCabe, C.; Cummings, P. T.;

Sallai, J.; Iacovella, C. R. Formalizing Atom-Typing and the Dissemination of Force Fields with

Foyer. Comput. Mater. Sci. 2019, 167, 215–227.

(4) Ryckaert, J.-P.; Bellemans, A. Molecular Dynamics of Liquid Alkanes. Faraday Discuss. Chem.

Soc. 1978, 66, 95–106.

(5) Lindahl; Abraham; Hess; Spoel, van der. GROMACS 2021.1 Manual

Https://Doi.Org/10.5281/Zenodo.5053220; 2021.

(6) Mukundan, R. Quaternions : From Classical Mechanics to Computer Graphics, and Beyond. In

Proceedings of the 7th Asian Technology Conference in Mathematics 2002.; 2002; pp 97–106.

(7) Kuznetsov, D. V.; Chen, Z. Y. Semiflexible Polymer Brushes: A Scaling Theory. J. Chem. Phys.

1998, 109, 7017–7027.

(8) Zhao, B.; Brittain, W. J. Polymer Brushes: Surface-Immobilized Macromolecules. Prog. Polym.

Sci. 2000, 25, 677–710.

(9) Frazier, P. A Tutorial on Bayesian Optimization. arXiv:1807.02811 2018, abs/1807.0.

(10) Rasmussen, C. E.; Williams, K. I. Gaussian Processes for Machine Learning; the MIT Press:

Massachusetts Institute of Technology, 2006.

(11) Nogueira, F. Bayesian Optimization: Open Source Constrained Global Optimization Tool for

Python; https://github.com/fmfn/BayesianOptimization, 2014.

(12) Kaelbling, L. P.; Littman, M. L.; Moore, A. W. Reinforcement Learning: A Survey. J. Artif. Int.

Res. 1996, 4, 237–285.

	S1. OPLS coefficients
	S2. Details about the mesoscopic polymer builder PyMeso
	S2.1. Introduction
	S2.2. Setup
	S2.3. Chain reconstruction
	S2.4. Reverse sampling

	S3. Autocorrelation function of the tangential components of the end-to-end vector
	S4. Brush-thickness scaling arguments for finitely extensible chains in a theta solvent
	S5. Nonergodic angle distributions
	S6. Calibration of the bonded coefficients
	S7. Optimization of the nonbonded coefficients
	S8. Details about the Bayesian optimization
	REFERENCES

