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S1 Determining the friction correction γs
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Figure S1: Single-particle velocity vp under constant force Fg as a function of
the uncorrected friction coefficient γ = 6πµR used to obtain γs for the Peskin
stencil. Circles mark simulation data and the blue line is a linear fit.

Using γs instead of γ to calculate the friction force acting on a particle in
the fluid flow effectively substracts the Stokeslet contribution of the particle
from the actual local fluid velocity. γs is equal to the y-intercept at 1/γ → 0 in
Fig. S1.1 There are no data points at small values of 1/γ because the particle-
fluid coupling is numerically unstable for particle radii approaching or exceeding
the size of the stencil.
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S2 DLVO potential and repulsive range χ
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Figure S2: Left: Total DLVO potential compared to only the repulsive part
in water for different Debye lengths with R = 300 nm and ζ = 50 mV. Right:
Radius dependence of the repulsive DLVO potential at fixed distance s/R and
Debye length λD/R in units of the radius. Significantly different values of ξ
(distance, where the repulsive potential exceeds 10 kBT) are needed to approx-
imate the system using Eq. (21) depending on R, particularly when λD & R.

S3 Radius dependence of repulsive potential

Let R′ = aR, with a > 1, λ̂D = λD/R and ŝ = λ̂D + ε with ε > 0. Then,
according to Eq. (15), E′coul(ŝ = s′/R′) for a particle of radius R′ is smaller as
compared to Ecoul(ŝ = s/R) for a particle of smaller radius R, all other variables
being equal, if

E′coul

Ecoul
=
R′

R
e
− λ̂D+ε

λD
(R′−R)

= ae
− λ̂D+ε

λ̂D
(a−1)

< 1. (S1)

We can use the fact that all terms in the Taylor series of an exponential function
with positive argument are also positive to rewrite the inequality in Eq. (S1) as

(a− 1) <
λ̂D + ε

λ̂D

(a− 1), (S2)

which is always true under the above-mentioned conditions.

S4 Velocity and linear fit errors

We repeated simulations with different random initial particle placements at a
range of values of χ and calculated the errors ∆v/v0 in average sedimentation
velocity and ∆K in slope as the standard deviations of the results of these runs.
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Figure S3: Change of error in measured velocities (left) and the derived slope
K (right) as a function of χ. Each data point represents an averaged value
obtained over four concentrations from 0.2-0.8% with 4-6 repetitions of each
simulation. The first data point at χ ≈ 0 results from averaging over a total of
seven such sets of simulations at similar values of χ but different parameters.
Like the error itself, the uncertainty in the error is also higher for lower χ.

For simulation parameters at which we performed no averaging, we instead
estimated the errors from fits of ∆v/v0 and ∆K as functions of χ. The fits,
shown in Fig. S3, follow a logistic curve with a drastic decrease by about two
orders of magnitude in the errors in the region of χ = 0.5−1, where the particles
transition into an ordered state.

We also measured the single particle velocity v0 in sedimentation direction
under random particle placement in each simulation setup used for our sedi-
mentation simulations and averaged these measurements. Since we simulated
approximately the same number of particles in each simulation, the system size
has to vary with concentration. This in turn leads to a changing degree of in-
fluence of the periodic boundaries on the single particle. Also its position with
respect to the lattice can have a small (< 1%) influence on the obtained steady-
state velocity.2 We observed a standard deviation among these measurements

of
√
〈v2

0〉 − 〈v0〉2/〈v0〉 = 0.24%. The averaged v0 deviates from the theoreti-

cal Stokes velocity by about 1% due to the above reasons and presumably due
to small inaccuracies in the calibration of γs. Most of the uncertainty in our
results seems to stem from the finite sample size of 10 000 particles and the
randomness involved in their initial placement and subsequent evolution under
Langevin dynamics.

S5 Reconstructing the hindrance function

The hindrance function v(φ)/v0 can be reconstructed from the fitted slope K(χ)
(Eq. (27)) by numerical integration. For this purpose we interpret K as the slope

2S. Ollila, C. Smith, T. Ala-Nissila and C. Denniston, Multiscale Model. Simul., 2013, 11,
213–243.

S3



0.2 0.3 0.4 0.5 0.6 0.7 0.8
Volume fraction in %

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V
el

o
ci

ty
v
/
v
0

λD = 5 nm

λD = 90 nm

λD = 200 nm

λD = 500 nm

λD = 950 nm

Figure S4: Sedimentation velocity of DLVO-interacting particles with radius
R = 200 nm at various Debye lengths compared to predictions from Eq. (S4).

of −v(φ)/v0 at a discrete value of φ, rather than as the result of linear fitting
over a range of φ. Hence we substitute Kω in Eq. (27) by the derivative K∂ of
−v(φ)/v0 with respect to φ, with v(φ) described by the power law form valid
for ordered suspensions (Eq. (18)), so that

K∂ = − ∂

∂φ

v(φ)

v0
=
ς

ω
φ

1
ω−1. (S3)

Inserting the modified Eq. (27) for K, the hindrance function can be calculated
as

v(ϕ)

v0
= 1−

∫ ϕ

0

K(ξ, φ) dφ = 1−
∫ ϕ

0

(KΦ(ξ)−K∂(φ))σ(
ξ/ŝφ − χm

δK
)+K∂(φ) dφ.

(S4)
Using the fit parameters ς = 1.71, ω = 3, χm = 0.38, and δK = 0.096 deter-
mined from the aggregated data in Figs. 4(a) and (b), the predicted hindrance
functions obtained from Eq. (S4) via numerical integration are quite consistent
with the original data for any parameter combinations, as shown in Fig. S4.
Some deviation from the data is visible for λD = 5 nm, where a slightly slower
decrease of v is observed compared to the prediction by Eq. (S4). The most
likely reason for this is the attractive van der Waals force in the simulation that
is not taken into account by the simple potential barrier model behind KΦ.
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S6 Next-neighbor distances for non-interacting
particles

Let the probability of finding the next neighbor of a particle of radius R at
center-to-center distance cnn = snn + 2R in a monodisperse suspension of con-
centration n = φ/Vp be P(cnn) dc. We can write this probability as a product of
the probability P1 that no other particle is within c < cnn of the particle and the
probability P2 that there is a particle in the infinitesimal range [cnn, cnn + dc],

P(cnn) dc =
(
1−

∫ cnn

2R

P(c) dc
)

︸ ︷︷ ︸
P1

× 4πnc2nn dc.︸ ︷︷ ︸
P2

(S5)

We let the integration in P1 commence at c = 2R because we can assume that
P(c < 2R) = 0 due to hard sphere repulsion. By canceling the remaining dc
and deriving by cnn on both sides we arrive at the differential equation

∂P(cnn)

∂cnn
= P(cnn)

( 2

cnn
− 4πnc2nn

)
. (S6)

This differential equation is solved by

P(cnn) = 4πnc2nne−
4
3πn(c3nn−8R3), (S7)

which fulfills the normalization condition∫ ∞
2R

P(c) dc = 1. (S8)

The average distance to the next neighbor 〈ŝnn〉 = 〈cnn〉/R−2 and the standard
deviation ∆ŝnn can be computed from the first and second moments of P via
numerical integration.
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