Supplementary Information

Drag force of polyethyleneglycol in flows of polymer solutions measured by a scanning probe microscope

Ruri Hidema *a, Ken-ya Fujito a, Hiroshi Suzuki a

a. Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan.

SI1. Physical properties of glycerol and PEG solutions

The glycerol (FUJIFILM Wako Pure Chem. Corp.) and polyethyleneglycol (PEG, FUJIFILM Wako Pure Chem. Corp.) solutions were prepared in a wide range of concentrations for the drag force measurements. The concentration of each solution, viscosities, and densities are summarized in Table SI1.

Table SI1. Physical properties of (a) glycerol, (b) PEG10k, (c) PEG20k and (d) PEG35k solution.

<u>(a)</u>			(b)		
Glycerol Concentration	Viscosity	Density	PEG10k Concentration	Viscosity	Density
[wt%]	[×10 ⁻³ Pa·s]	[kg/m ³]	[wt%]	[×10 ⁻³ Pa·s]	[kg/m ³]
5	1.15	1013	0.75	1.13	1002
6	1.24	1016	1.0	1.20	1004
8	1.32	1021	1.25	1.30	1008
10	1.4	1026	1.5	1.37	1009
15	1.59	1039	2.0	1.53	1013
22	1.88	1058	3.0	1.81	1025
35	2.41	1093	5.0	2.46	1046
(c)			(d)		
PEG20k Concentration	Viscosity	Density	PEG35k Concentration	Viscosity	Density
[wt%]	[×10 ⁻³ Pa·s]	[kg/m ³]	[wt%]	[×10 ⁻³ Pa·s]	[kg/m ³]
0.5	1.13	1001	0.25	1.12	1001
0.75	1.23	1002	0.35	1.21	1001
1.0	1.32	1003	0.50	1.31	1001
1.25	1.39	1003	0.75	1.37	1003
1.5	1.59	1003	1.0	1.55	1003
2.0	1.83	1005	1.5	1.86	1008
3.0	2.41	1008	2.0	2.47	1010

Zero-shear specific viscosity, η_{sp} [-], which is defined with the zero-shear viscosity η_0 [Pa·s] and the solution viscosity η_s [Pa·s], as $\eta_{sp} = (\eta_0 - \eta_s)/\eta_s$, of PEG solutions, was used to find the overlap concentration, c^* [g/ml], and entanglement concentration, c_e [g/ml]. η_{sp} of PEG solutions. η_{sp} obtained in the present study reasonably follows the scaling index suggested in the previous studies as shown in Fig. SI1 [1, 2]. c^* and c_e are shown in each figure.

Fig. SI1 η_{sp} of (a) PEG10k, (b) PEG20k and (c) PEG35k solutions.

SI2. Example of the measurement data

An example of the experimental data detected by the SPM through the oscilloscope. The oscilloscope did not detect any force when the sample solution was at rest. However, when the sample solution flowed through the channel, the oscilloscope detected a drag force as shown in Fig. SI2.

Fig. SI2 The force detected by the cantilever in the flow of glycerol 22wt% solution at the flow rate of 4mL/min.

SI3. Evaluation of the experiments

The C_d values of the naked cantilever probe measured in the PEG10k and PEG35k solutions are shown in Fig. SI3, which are also a function of *Re.* C_d -*Re* is independent of the solution around the naked cantilever, verifying the validity of the measurements.

Fig. SI3 C_d-Re plot for the naked cantilever probe in (a) PEG10k and (b) PEG35k solutions.

SI4. Parameters and examples of calculated values to obtain ΔF by Eq. (5)

Here we summarize several important parameters and calculated values to obtain ΔF by Eq. (5). Dimensions of the cantilever and calculated values based on the dimensions are summarized in Table SI2. The grafting distance, Δl , was calculated based on data obtained from previous studies, which is summarized in Table SI3. Table SI4 summarized the velocities V [mm/s] of glycerol solution at each flow rate as examples. Table SI5 summarized the averaged values of f_{single} [pN] of each PEG in glycerol solutions at each flow rate as examples.

 Table SI2. Dimensions of the cantilever.

cosα	$\cos heta$	<i>L</i> [nm]
0.754	0.966	100

Table SI3. The grafting distance, Δl , of mPEG-SH of each molecular weight.

mPEG-SH	Δl [nm]
10k	2.5
20k	3.9
40k	4.9

Flow rates [mL/min]	5 wt%	10 wt%	15 wt%	22 wt%	35 wt%
2.0	1.69	1.69	1.69	1.68	1.68
3.0	2.50	2.48	2.46	2.43	2.39
4.0	3.41	3.39	3.38	3.36	3.32
5.0	4.33	4.29	4.26	4.22	4.14

Table SI4. The velocity, V [mm/s], of each glycerol solution at each flow rate. The position measured the velocity was the height of 1.4 mm, at the test position in the flow channel.

Table SI5. The averaged values of f_{single} [pN] of mPEG-SH (a) 10k, (b) 20k and (c) 40k in glycerol solution at each concentration at each flow rate.

(a)					
Flow rates [mL/min]	5 wt%	10 wt%	15 wt%	22 wt%	35 wt%
2.0	0.108	0.132	0.149	0.176	0.226
3.0	0.160	0.194	0.218	0.255	0.321
4.0	0.218	0.265	0.299	0.352	0.446
5.0	0.277	0.336	0.377	0.442	0.557
(b)					
Flow rates [mL/min]	5 wt%	10 wt%	15 wt%	22 wt%	35 wt%
2.0	0.165	0.202	0.228	0.269	0.345
3.0	0.244	0.295	0.332	0.388	0.487
4.0	0.333	0.404	0.454	0.533	0.675
5.0	0.421	0.509	0.571	0.668	0.838
(c)					
Flow rates [mL/min]	5 wt%	10 wt%	15 wt%	22 wt%	35 wt%
2.0	0.235	0.287	0.324	0.382	0.489
3.0	0.347	0.419	0.470	0.551	0.688
4.0	0.472	0.574	0.641	0.754	0.957
5.0	0.598	0.720	0.809	0.947	1.194

References

[1] W. E. Krause, E. G. Bellomo and R. H. Colby, Biomacromolecules, 2001, 2, 65.

[2] R. Hidema, T. Oka, Y. Komoda and H. Suzuki, Phys. Fluids, 2019, 31, 072005.