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I. PROBLEM FORMULATION

The schematic in Fig. 1 (a) shows a neutrally buoyant spherical microswimmer suspended in
pressure-driven flow of a polymeric fluid between two walls. In order to derive the expressions
for the lift velocities, we work in a reference frame that translates with the swimmer (x̃, ỹ, z̃). For
simplicity, we temporarily drop the tilde˜notation. Fig. 1 (b) shows the non-dimensional description,
where s = d/2w and s/κ = d/a is the distance from the bottom wall normalized by the particle
radius a.
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FIG. 1: (a) A spherical microswimmer self-propels with velocity vs = vsp in a planar Poiseuille flow inside
a channel with half width w. The coordinate frame {x̃, ỹ, z̃} co-moves with the swimmer. (b) Schematic with
all lengths normalized by particle radius a. The tilde notation of the coordinates is shown to be dropped for
brevity.

The inertia-less hydrodynamics of the disturbance field is governed by the continuity (∇·V = 0)
and momentum equation in the co-moving swimmer frame {x̃, ỹ, z̃} as1:

∇ · (−P I+ 2E+WiS) = 0, (1)

where S = 4E ·E+2δ
∆
E. Here, E is the rate of strain tensor and ∆ denotes the lower-convected time

derivative:
∆
E =

∂E

∂t
+ V · ∇E+ E · ∇V † +∇V · E, (2)

where the time derivative can be neglected for the current problem of steady pressure-driven flow
[1]. We split the actual velocity field into the background flow field v∞ and the disturbance field v
(i.e. V = v+v∞). Similarly, pressure and rate of strain tensor is split: P = p+p∞ and E = e+e∞,
respectively. Substituting this in (1), we obtain the following:

∇ · [−(p+ p∞)I+ 2(e+ e∞) +Wi(s+ s∞)] = 0. (3)

Here,

s = 4(e · e+ e∞ · e+ e · e∞) + 2δ
(
v · ∇e+ e · ∇v† +∇v · e+ v∞ · ∇e+ e · ∇v∞† +∇v∞ · e

+ v · ∇e∞ + e∞ · ∇v† +∇v · e∞
)
, (4a)

s∞ = 4(e∞ · e∞) + 2δ
(
v∞ · ∇e∞ + e∞ · ∇v∞† +∇v∞ · e∞

)
. (4b)

1We follow a quasi-steady description because the time scales associated with cross-stream motions both due to swim-
ming (a/vs ∼ 1s) and viscoelastic lift are much larger than the characteristic vorticity diffusion time (a2/ν ∼ 10−4s).
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In (3), the combination of terms −∇p∞ + 2∇ · e∞ +Wi∇ · s∞ is zero, as it forms the momentum
equation of pressure driven flow of a second-order fluid. Its solution is the undisturbed Poiseuille
flow velocity. In the frame of reference translating with the particle, it is obtained as:

v∞ =
(
α+ βx+ γx2

)
ez −Up, (5)

where Up is the total velocity of the swimmer, i.e., swimming velocity vs plus advection due to the
Poiseuille flow and the lift velocities. The constants α, β and γ are:

α = 4s (1− s) /κ, β = 4 (1− 2s) , γ = −4κ, (6)

where β and γ represent the shear and curvature of the background flow, respectively.
Compactly, one can describe the final governing equations as:

∇ · v = 0, −∇p+∇2v = −Wi (∇ · s), where

s = 4(e · e+w) + 2 δ(
∆
e +

∆
w). (7)

Here, e is the rate of strain tensor for the disturbance flow (∇v +∇v†)/2, whereas w, ∆
e and ∆

w are
the different parts of the perturbation s of the polymeric tensor due to the disturbance flow field v:

w = e∞ · e+ e · e∞,
∆
e = v · ∇e+ e · ∇v† +∇v · e,
∆
w = v∞ · ∇e+ e · ∇v∞† +∇v∞ · e+ v · ∇e∞ + e∞ · ∇v† +∇v · e∞, (8)

where e∞ is the rate of strain tensor for the undisturbed flow, ∆
e is the lower convected derivative of e

(also known as the Rivlin-Eriksen tensor), w is the ‘interaction tensor’ (arising from the interaction
between background flow and disturbance field), and ∆

w is its lower convected derivative.
The above equations are non-dimensionalized using a, κvm, µκvm/a as the characteristic scales

for length, velocity, and pressure, respectively. The definitions of these dimensional parameters a
(particle size), κ = a/2w, and vm (maximum flow velocity) are consistent with the communication
article.

The boundary conditions of the disturbance flow field are

v = vθ +Ωs × r − v∞ at r = 1, (9a)
v = 0 at walls, (9b)

v → 0 as {y, z} → ∞. (9c)

Here, the walls are located at x = −s/κ and x = (1−s)/κ, and vθ represents a prescribed tangential
surface velocity of the spherical microswimmer, which determines its swimming motion. In Sect. III
we will introduce we will introduce for vθ the surface flow field of a neutral squirmer, which serves
as a model microswimmer [2, 3].

II. PERTURBATION EXPANSION

We find the viscoelastic lift or migration velocities at O(Wi) using a regular perturbation expan-
sion. For small values of Wi, the disturbance field variables are expanded as:

ξ = ξ0 + Wi ξ1 + · · · . (10)

Here, ξ is a generic field variable which represents velocity (v), pressure (p), translational (Up) and
angular particle velocity (Ωp). We substitute (10) in the equations governing the disturbance field
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(7) and obtain the problem at O(1) (i.e. Stokes problem) as

∇ · v0 = 0,
∇2v0 −∇p0 = 0,

v0 = vθ +Ωp0 × r − v∞
0 at r = 1,

v0 = 0 at walls,
v0 → 0 as {y, z} → ∞.

 (11)

and at O(Wi) as:

∇ · v1 = 0,
∇2v1 −∇p1 = −∇ · s0,

v1 = Up1 +Ωp1 × r at r = 1,
v1 = 0 at walls,
v1 → 0 as {y, z} → ∞.

 (12)

In (11), v∞
0 =

(
α+ βx+ γx2

)
ez − Up 0, where Up0 is the particle velocity in leading order in the

Stokes regime.
Ho and Leal [1], in their seminal work, used the reciprocal theorem to derive a volume integral

expression for the lift velocity associated with the O(Wi) equations (12):

F ≡ WiUp1 · ex = − 1

6π
Wi

∫
Vf

s0 : ∇̃vt dV. (13)

The auxiliary or test field (vt, pt) is associated with a sphere moving in the positive x-direction
(towards the upper wall) with unit velocity in a quiescent fluid:

vt(r) =
3

4

(
ex +

xr

r2

) 1

r
+

1

4

(
ex −

3xr

r2

)
1

r3
. (14)

The reciprocal theorem makes it relatively easy to find lift velocities at O(Wi), as we can solve the
creeping flow problem (11) using well-established methods [4, 5] and directly substitute its solution
in (13). In other words, we do not need to solve the O(Wi) problem (12) to obtain the O(Wi) lift.

III. VISCOELASTIC LIFT VELOCITY: SOURCE-DIPOLE SWIMMER

We now use expression (13) for evaluating the swimming lift of a source-dipole swimmer. We use
the method of reflections to solve for (11). Assuming that the small particle is not too close to the
walls (i.e. s≫ κ), the disturbance field (v0, p0) is sought as successive reflections: ξ = ξ(1) + ξ(2) +
· · · . Here, ξ(i) represents the ith reflection, where the odd reflections satisfy boundary conditions
at the particle surface and even reflections satisfy the wall boundary conditions. Accounting for
each successive pair of reflections increases the accuracy by O(κ) [6]. Furthermore, it is shown by
Choudhary et al. [7][p. 18] and Ho and Leal [1][p. 792] that wall effects do not add to the leading
order (in κ) of the volume integral. Thus, it suffices to include the first reflection and neglect wall
effects.

We explicitly choose the axisymmetric neutral squirmer, which has the surface velocity field
vθ = B1 sin θeθ, where θ is the polar angle and eθ the corresponding base vector. The swimming
velocity is directly related to this squirmer coefficient: vs = 2B1/3 [8, 9]. The solution to the O(1)
Stokes problem (11) can be divided in swimming and passive disturbances. From the squirmer model
[2], we obtain:

vswim
0 =

ṽsp

2r3
·
[
3rr

r2
− I

]
=

ṽs
2r3

[
cosψ

(
3zr

r2
− ez

)
+ sinψ

(
3xr

r2
− ex

)]
, (15)
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where ṽs is non-dimensionalized i.e. ṽs = vs/(vmκ). Using Lamb’s general solution [4], we obtain
the passive disturbance

vpassive
0 = B

(
−ez +

3zr

r2

)
1

r3
+D

zxr

r5
+ E

(
xez + zex −

5xzr

r2

)
1

r5

+ F

(
ez −

2x2ez + zr

r2
+

2xzex
r2

)
1

r3
+G

(
ez −

5x2ez + 10xzex + 13zr

r2
+

75zx2r

r4

)
1

r3

+ H

(
ez −

5x2ez + 10xzex + 5zr

r2
+

35zx2r

r4

)
1

r5
, (16)

where the coefficients are defined as:

B =
γ

15
, D = −5β

2
, E = −β

2
, F =

γ

3
, G = − 7γ

120
, H =

γ

8
. (17)

The terms multiplying the coefficients B, D, E represent source-dipole, stresslet, and octupole
singularities, respectively [5, 10]. The other disturbances (terms multiplying F, G, H) are further
singularities in the multipole expansion, which arise due to the curvature γ in the background flow
field together with the source dipole.

The tensor e∞ is yet unknown for the Poiseuille flow of Eq. (5) in zeroth order of Wi. To
calculate it, we note that the total velocity of the force-free swimmer in the Stokes regime is Up 0 =
ṽs+(α+γ/3)ez (the second part is obtained by using Faxen’s laws [5]). To complete the expression
of v∞

0 , we substitute Up 0 in (5), and obtain:
v∞
0 = (βx+ γx2 − γ/3)ez − ṽs (18)

which gives [e∞]xz = [e∞]zx = (β + 2xγ)/2.
Now, we evaluate the volume integral in Eq. (13). Since the source-dipole field of the neutral

swimmer decays quickly away from the swimmer (∼ 1/r3), we can neglect the wall corrections
in the volume integral of Eq. (13). In the context of an electrophoretic source-dipole disturbance,
Choudhary et al. [11] showed that the error generated from this neglection is dispensable. Integrating
over the infinite space, we obtain the swimming lift velocity in units of vs as

F = Wi [ (5/9)βγ(1 + 3δ)v̄mκ + (1/4)β(1 + δ) cosψ ] , (19)
expressed in the co-moving frame of the swimmer. The first component is the passive lift velocity
(identical to that obtained by Ho and Leal [1]), and the second component is the swimming-lift
velocity that arises due to the source-dipole disturbance created by the neutral swimmer.

IV. VISCOELASTIC LIFT VELOCITY: FORCE-DIPOLE SWIMMER

As before, v0 is the combination of flow fields due to swimming and the passive disturbance.
The latter is identical to (16); for the swimmer, we take the force-dipole field from the studies on
flagellated microswimmers [12, 13], where P is the dipole strength normalized with 8πµa2vs:

v
(1)swim
0 = P ṽsr

[
−1

r3
+ 3

(r · p)2

r5

]

= P ṽs cos2 ψ
(
−r

r3
+

3z2r

r5

)
+ P ṽs sin2 ψ

(
−r

r3
+

3x2r

r5

)
+ P ṽs sin 2ψ

(
3xz r

r5

)
.(20)

Substituting the above equation together with Eq. (16) into Eq. (13) and integrating over the infinite
domain, we obtain (in the units of vs):

F = Wi [ (5/9)βγ(1 + 3δ)v̄mκ − (2/3)Pγ(1 + 3δ) sin 2ψ ] . (21)
The second component is the additional swimming-lift velocity that will be experienced by the
force-dipole swimmer. Note that it depends on the curvature γ of the Poiseuille flow.
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V. INERTIAL LIFT VELOCITIES IN THE CHANNEL FRAME

Here we provide the final expressions of the swimming and passive lift velocities in the channel
frame of reference, which is used in the communication article. The conversion requires a transfor-
mation of particle-wall distance s/κ to the channel x coordinate (see Fig. 1); for x in units of w we
then have s = (1 + x)/2.
1. Swimming lift: Neutral microswimmer
Using the definition of β (6) and s = (1 + x)/2 in (19), yields:

Fswim = −Wi(1 + δ)x cosψ. (22)

2. Swimming lift: Pusher/puller microswimmer
Using the definition of γ (6) in (21), yields:

Fswim = Wi(8/3)(1 + 3δ)Pκ sin 2ψ (23)

3. Passive lift:
Using the definition of β, γ (6) and s = (1 + x)/2 in the passive lift component, yields:

Fpassive = Wi(80/9)(1 + 3δ)x v̄mκ
2. (24)

VI. PARTICLE DRIFT AND ROTATION MODIFICATION

To calculate the viscoelastic modification to drift and rotational velocity of the swimmer, we use
the following two test fields (respectively):

vt(r) =
3

4

(
ez +

zr

r2

) 1

r
+

1

4

(
ez −

3zr

r2

)
1

r3
. (25)

vt(r) =
xez − zex

r3
. (26)

A. Source-dipole swimmer

Substituting (25) in the volume integral (13), we obtain the drift modification as:

Udrift =
1

4
Wiβ ṽs(1 + δ) sinψ. (27)

Substituting (26) in the volume integral for O(Wi) rotational correction: −Wi
8π

∫
Vf

s0 : ∇̃vt dV, we
obtain the rotation modification as:

Ω1 =
Wi
2
γ ṽs sinψ ey (28)

B. Force-dipole swimmer

Similarly, for force-dipole swimmer, we obtain

Udrift =
Wi
12

γ ṽs(1 + δ)(−3 + 5 cosψ), Ω1 =
Wi
2
β ṽs(1 + 3δ) cos 2ψ. (29)

Since these effects are an order of magnitude (in Wi) smaller than the flow speed and flow vorticity
(respectively), they do not alter the swimmer dynamics.
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VII. FURTHER RESULTS ON FOCUSING TIME

Fig. 2 shows the variation of focusing time with swimmer size and flow rate strength. For both
source-dipole and force-dipole swimmers, the focusing time decreases with increase in κ and v̄m.
Interestingly for a source-dipole swimmer, Fig. 2 (a) shows that for a relatively small size (κ < 0.1)
the focusing time increases with flow rate in an intermediate range (approximately 5 < v̄m < 10).
This occurs because in this range of flow rate the swimmer has to escape the tumbling state to
attain centerline focusing, as can be observed in Fig. 2 (c). As the flow rate further increases, the
migration velocity also increases which results in reduction of focusing time.

(a) (b)

(c)

FIG. 2: (a) Contour plot for focusing time of a source-dipole swimmer that varies with κ and v̄m. (b)
Contour plot for force-dipole swimmer for v̄m > 4. (c) Temporal trajectories of a source-dipole swimmer for
κ = 0.05. Other parameters: x0 = 0.9, ψ0 = 0, Wi = 0.1.
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