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A Tabulated list of the parameters
While all relevant parameters are listed in the main text, we want to list all
parameters used in the simulation. In particular, both the parameter set for the
environment and the RL hyperparameters are listed in Appendices A.1 and A.2,
respectively.

A.1 Environment
Here, we list the parameters for the simulation framework. It should be noted
that several features are deactivated. In particular, there is no Brownian motion
and no fluid integration taking place for this paper’s purpose.
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Parameter Name Value Notes
sweep_experiment False
mixing_experiment True
run_id 0 Only relevant if

sweep_experiment
is true.

savefreq_fig 1000000 Never stores any figures.
savefreq_data_dump 100000 Never store data dumps.
use_interpolated_fluid_velocities True Irrelevant because flu-

ids are deactivated by
Rdrag= 0

dt 0.05
T 5
particle_density 6.0 Leading to 96 particles

in a 4× 4 area.
MAKE_VIDEO False
SAVEFIG False
const_particle_density False
measure_one_timestep_correlator False
periodic_boundary True
activation_fn_type activation_matrix
L 2 Simulation area is in

both directions from −L
to L.

m_init 1.0
activation_decay_rate 10.0
spring_cutoff 1.5
spring_k 3.0
spring_k_rep 3.0 Spring constant k for

the repulsive interaction
is chosen as strong as
for the attractive inter-
action.

spring_r0 0
LJ_eps 0
brownian_motion_delta 0
mu 10.0
Rdrag 0
drag_factor 1
spring_lower_cutoff 0.015
n_part 96
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A.2 Reinforcement learning framework: rl-lib

Here, we list the hyperparameters chosen for the RL framework. In particular, we
used the Proximal Policy Optimization as implemented in rl-lib in conjunction
with Population Based Training implemented in ray1. It should be noted that
while some of the parameters are initially constrained to an interval, mutations
caused by PBT can go beyond the initial interval. Here, U([a, b]) denotes the
uniform distribution over the interval [a, b], and I(a, b) is a random integer
between a and b (inclusive).

Parameter Name Value
time_attr time_total_s
metric episode_reward_mean
mode max
perturbation_interval 120
hyperparam_mutations: lambda U([0.8, 1])
hyperparam_mutations: clip_param U([0.01, 0.7])
hyperparam_mutations: lr [1 · 10−2, 5 · 10−3, 1 · 10−3, 5 · 10−4,

1 · 10−4, 5 · 10−5, 1 · 10−5]
hyperparam_mutations: num_sgd_iter I(1, 30)
hyperparam_mutations: sgd_minibatch_size I(128, 16384)
hyperparam_mutations: train_batch_size I(2000, 60000)

A.3 Computing resources used
Here, we list the amount of computing resources used for our simulations. There
were two sets of simulations, one to determine the strategies, the second one to
extract the update matrix M . For both of these, {a, b, c, · · · } means that the
experiment was repeated for all values in this set. If multiple sets are listed,
simulations were performed for all different combinations. All other numbers are
for a single combination. For example, every combination of a specific α and
interaction set used 16 CPU cores. The simulation parameters for the strategy
screen (see Sec. 4) are:

Parameter Name Value
α {0, 18 ,

2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

6
8 ,

7
8 , 1}

(attractive interactions allowed, re-
pulsive interactions allowed)

{(True, True), (True, False),
(False, True) }

Number of CPU cores 16
Number of GPUs 1
Training time 2 or 3 days, depending if the 2 days

run converged completely

The simulation parameters for the eigenvalue screen are:
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Parameter Name Value
α 1

2
(attractive interactions allowed, re-
pulsive interactions allowed)

{(True, True), (True, False),
(False, True) }

Number of CPU cores 16
Number of GPUs 1
Training time 3 days
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B Rewards during training
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(a) α = 0 (b) α = 1
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(c) α = 1
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(d) α = 3
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(f) α = 5
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(g) α = 3
4

(h) α = 7
8

(i) α = 1

Supplementary Figure 1: Rewards during training for attractive interactions
only. Solid lines are average episode rewards of the 16 PBT agents, whereas the
error bands denote minimal and maximal episode rewards during each batch. It
should be noted that panel (i) is the same as Fig. 2(a).
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Supplementary Figure 2: Rewards during training for repulsive interactions only.
Solid lines are average episode rewards of the 16 PBT agents, whereas the error
bands denote minimal and maximal episode rewards during each batch.
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Supplementary Figure 3: Rewards during training for combined interactions.
Solid lines are average episode rewards of the 16 PBT agents, whereas the error
bands denote minimal and maximal episode rewards during each batch.
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C Detailed description of the strategies
This part of the supplemental information will provide a more detailed description
of the emergent strategies we observed during our training. In particular, in
Appendix C.1, we show a curated time series for each of the emergent strategies,
and in Appendix C.2, we show a more quantitative comparison between the
different emergent strategies.

C.1 Curated Time Series
C.1.1 Attractive Interactions

For attractive interactions the following strategies emerged:

• “Collapse all”: This strategy activates large parts of the system. The agents
try to collapse the system as quickly as possible, and typically not much
dynamics is happening after t = 2.5 (i.e., time-step 50 out of Nt = 100)
because most of the system has already collapsed into individual clusters
that are separated more than the interaction cutoff Rc. As such, this
strategy focuses on speed of collapse over everything else, and often leaves
multiple clusters behind as an artifact.

• “Collapse all, careful”: Similar to the “Collapse all” strategy, the goal of
this strategy is to collapse the system into one dense cluster. However, in
contrast, this strategy does so slower and more methodical. This strategy
typically leads to dynamics taking more than half of the simulation time:
As an example consider Suppl. Fig. 4b, where the system is still fairly
spread out in the third panel, after 2/3 of the simulation time. In particular,
we believe the strategy does so in order to avoid dense clusters of a single
color. As an additional feature of this strategy, by leaving the system more
time to react, the cluster formation is typically more thorough, and this
strategy often succeeds in collapsing the system into a single cluster, in
contrast to the “collapse all” strategy.

• “Collapse some”: This strategy is an evolution of the “Collapse all, careful”-
strategy where no longer all particles are collected, but only the ones in
“bad bins”. In particular, this strategy will collapse some of the cells into
clusters, achieving good mixing scores in these bins, however, leaving other
parts of the system untouched in order to benefit from the homogeneity of
the initial state.

• “Activate little”: Finally, in the activate little, the system activates very
few bins, and if it does so, rarely neighboring bins. This strategy leads to
a possible contraction within a single bin, however, rarely over multiple
bins. Due to the binning procedure for the rewards, a collapse within a
single bin does not affect the rewards, and as such, can be performed by
the network without changing the reward.

Curated examples for these strategies can be found in Suppl. Fig. 4.
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C.1.2 Repulsive Interactions

For repulsive interactions the following strategies emerged:

• “Repulsive spreading”: This strategy activates most of the system. Using
this strategy, the agents achieve additional homogenization on top of the
random initial configuration. Indeed, as we can observe in Suppl. Fig. 5a,
the initial random configuration exhibits some clustering just by random
chance. However, activating most of the system repulsively will achieve a
decent separation between the particles, and the system in the last panel
is better homogenized than the initial configuration was.

• “Activate one side”: This strategy uses repulsive interactions on one side
of the system very often and rarely on the other side of the system. This
strategy will keep one tag of particles inactive, where the others will spread
out. Due to the periodic boundary conditions and Ng = 4, all left bins are
boundary bins to all right bins. As such, if the left bins can be emptied
and all the particles can be put into the right bins, an optimal mixing
can be achieved in the boundary region, while the homogenization is not
strongly punishing, as only half of the system is empty. It should be noted
that this strategy might be an artifact of a small number of bins and that
for finer binning, where most cells are not boundary cells, this strategy
might no longer be optimal for any α.

Curated examples for these strategies can be found in Suppl. Fig. 5.

C.1.3 Combined Interactions

For combined interactions the following strategies emerged:

• “Collapse all”: Similar to the collapse all strategy using attractive interac-
tions exclusively, this strategy tries to collapse as much of the system to
a single bin as quickly as possible. Repulsive interactions are sometimes
used to accelerate the process.

• “Oscillation w/ collapse”: This strategy similarly starts by contracting most
of the system to a dense cluster. However, it will then apply a repulsive
pulse to these particles. The particles then subsequently spread out (cf.
Suppl. Fig. 6b, panels 2 to 3). Because the particles are clustered densely,
the interactions are very strong once they become repulsive, and the dy-
namics are quick. As such, this strategy achieves relatively rapid dynamics
and mixing. However, it does not necessarily focus on homogenizing the
system eventually, as one can observe in the rather collapsed state in the
last panel of Suppl. Fig. 6b.

• “Oscillation w/o collapse”: This strategy is similar to the “Oscillation w/
collapse” strategy as it also uses attractive interactions to bring particles
closer together to increase their mutual interaction and then repulsive in-
teractions to spread them out. However, this strategy is more careful never
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to facilitate a complete collapse. This difference is the main separating
characteristic between this strategy and the “oscillation w/ collapse” strat-
egy. It should be noted that because this strategy never collapses particles
to dense clusters, the subsequent repulsive interactions are weaker. Hence,
the mixing tends to be slower and requires more oscillations. However, this
strategy typically also achieves fairly decent homogenization towards the
end of the simulations.

• “Attractive-repulsive spreading”: This strategy mostly resembles the “re-
pulsive spreading” strategy for repulsive-interactions-only systems. Indeed,
the agents use predominantly repulsive interactions to further homogenize
the system from the initial configuration.

Curated examples for these strategies can be found in Suppl. Fig. 6.
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(a) collapse all

(b) collapse all, careful

(c) collapse some

(d) activate little

Supplementary Figure 4: Curated examples for all strategies emerging in
attractive-interactions-only simulations. It should be noted that Suppl. Fig. 4a
is the same time series as depicted in the main manuscript in Fig. 2(b).
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(a) repulsive spreading

(b) activate one side

Supplementary Figure 5: Curated examples for all strategies emerging in
repulsive-interactions-only simulations. It should be noted that Suppl. Fig. 5b is
the same time series as depicted in the main manuscript in Fig. 3(a).
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(a) collapse all (with both interactions allowed)

(b) oscillation w/ collapse

(c) oscillation w/o collapse

(d) attractive-repulsive spreading

Supplementary Figure 6: Curated examples for all strategies emerging if at-
tractive and repulsive interactions are available. It should be noted that
Suppl. Figs. 6b and 6c are the same time series as depicted in the main manuscript
in Fig. 4(a) and (b), respectively.
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C.2 Quantitative Description
In this section, we present two figures: Suppl. Figs. 7 and 8. Both these
figures demonstrate that while a complete classification in terms of raw data
is challenging, a quantitative analysis supports the (mostly) smooth strategy
evolution presented in the main manuscript.

D Determinants as a function of time for trained
agents

15



0 1 2 3 4 5
0

5

10

15

Bi
ns

 a
ct

iv
at

ed

collapse some

0 1 2 3 4 5
0

5

10

15
oscillation w/o collapse

0 1 2 3 4 5
0

5

10

15

Bi
ns

 a
ct

iv
at

ed

collapse all, careful
0 1 2 3 4 5

0

5

10

15
repulsive spreading

Attractive Bins
Repulsive Bins

0 1 2 3 4 5
0

5

10

15
attractive-repulsive spreading

0 1 2 3 4 5
0

5

10

15
oscillation w collapse

0 1 2 3 4 5
0

5

10

15

Bi
ns

 a
ct

iv
at

ed

activate little

0 1 2 3 4 5
Time

0

5

10

15

Bi
ns

 a
ct

iv
at

ed

collapse all

0 1 2 3 4 5
Time

0

5

10

15
collapse all

0 1 2 3 4 5
Time

0

5

10

15
activate one side

Supplementary Figure 7: In this figure, we show the number of activated bins
(both attractive and repulsive) during the simulation time for the runs shown
in the figures in Appendix C.1. It can be observed that the number of bins
that are activated fluctuates heavily, but that several trends emerge: The left
column shows the attractive only case, where going from the top down, the
strategies focus more on the mixing reward. As such, the RL agent uses the
interactions more heavily. Additionally, one can observe that the “collapse-all,
careful”-strategy uses the attractive activation increasingly towards the end of
the simulation, where the “collapse all”-strategy uses more of the activation
already in the beginning. As another example, the right column shows combined
interactions, where we can observe that the “attractive-repulsive spreading”-
strategy uses mostly repulsive interactions, while the “collapse all”-strategy
makes heavier use of the attractive attraction.
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Supplementary Figure 8: In this figure, we show the fraction of attractive and
repulsive activated bins for the last validation videos produced by all our agents
(i.e., this data corresponds to the strategy diagrams Figs. 2c, 3b, 4c of the
manuscript). In particular, for each of the videos, we used image analysis to
extract how many bins were attractively activated, repulsively activated, or not
activated during the course of the simulation. The simulations with a restricted
interaction set are along the axes, because they could not activate the second
type of interaction. In this figure, we can observe two features: Firstly, the
strategy evolution is ordered, i.e., the order of the strategy in Figs. 2c, 3b, 4c
of the manuscript corresponds to a direction in this plot, namely reducing α,
i.e., going towards more homogeneous solutions moves strategies to a smaller
fraction of attractive bins and a higher fraction of repulsive bins (to the top
left corner of the plot). Secondly, the strategy evolution is mostly continuous,
i.e., no large gaps emerge going from one strategy to the next. There are two
exceptions to this continuous evolution, namely between “repulsive spreading”
and “activate one side” where a small gap emerges, as well as a sizable gap
between “attractive-repulsive spreading” and the other combined interactions
strategies. This latter jump in strategies can also be observed in the strategy
composition diagram for combined interactions shown in Fig. 4c.
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Supplementary Figure 9: The value of the determinant during a simulation for
α = 0.5 with both interaction types for each of the trained agents. The data
correspond to the same runs used to determine the eigenvalue histograms for
Fig. 5 of the manuscript. In this figure, the determinant as a function of time
is shown in a solid line, the dashed line represents the geometric mean of the
data, which is also indicated in the top right corner of each panel by 〈detM〉,
and a dotted line indicates the value 1. It can be observed that the value of
the determinant oscillates wildly indicating oscillatory strategies, however, the
mean tends to be slightly larger than 1 as one would expect from our theoretical
analysis because the linearized approach does not take the periodic boundary
conditions into account, which provides an additional phase space limiting factor
not taken into account by this linearized analysis.
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