A pressure-jump study on the interaction of osmolytes and crowders with cubic monoolein structures

Göran Surmeier, Michael Paulus, Eric Schneider, Metin Tolan, Susanne Dogan and Julia Nase

Supplementary information

Integrated SAXS patterns (colored points) and fits (black lines) of monoolein samples containing 150g/L PEG 400 (*left*) and PEG 1500 (*right*) before pressurization (*top*), at 1000 bar immediately before and at 50 bar immediately and at different times after the pressure-jump. The different phases were fitted with up to seven Gaussian distributions with independent width and intensity but a fixed ratio between their positions. Typically, the Pn3m phase occurred at 50 bar and the lamellar L_c phase at 1000 bar. For PEG 1500, however, the L_c phase was still visible during the first measurement at 50 bar after the pressure-jump.

Integrated SAXS patterns (colored points) and fits (black lines) of monoolein samples containing 1M urea (*left*) and TMAO (*right*) before pressurization (*top*), at 1000bar immediately before and at 50bar immediately and at different times after the pressure-jump. At 50bar the cubic Pn3m phase occurred and at 1000bar the lamellar L_c phase. For TMAO, the L_c phase was still visible during the first measurement at 50bar after the pressure-jump.

Integrated intensity of the first two Pn3m Bragg reflections of monoolein in presence of PEG of different sizes (*top*) and the osmolytes urea and TMAO (*bottom*) as a function of time after a pressure-jump

(conducted at t = 0). The integrated intensities are normalized to their temporal mean values and vertically shifted for clarity.

