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S1 Continuum model for active nematohydrodynamics
In the continuum description of active nematics, the total stress comes from three contributions,
namely viscous, elastic and active. The contribution that comes from the Newtonian behaviour of
the active fluid gives the viscous stress1,

πviscous = 2ηE (1)

where η is shear viscosity and E = (∇u+∇u>)/2 is the strain rate tensor, the symmetric part of
the velocity gradient tensor.

The second contribution to the total stress comes from the orientational elasticity of the system
since the active entities are generally anisotropic in shape (rod-like or disk-like) and they develop
an orientational order due to activity2,3. Thus, it is necessary to quantify the order in the system,
and the role of free energy associated with this ordering. Restricting to nematic order we use a
tensor order parameter,

Q =
q
2
(3nn− I), (2)

where q is the strength of ordering for a uniaxial nematic at a point (in the continuum approxima-
tion), also known as the uniaxial scalar order parameter4, n, the director field, is a unit vector that
represents the average orientational order of the active entities and I is the identity tensor.

A thermodynamic contribution to the free energy of the system arises from the gradients in the
order parameter field, often classified as bend, splay and twist deformations of the director field.
Using a single elastic constant approximation which assigns the same strength to different types of
deformations in the order parameter field5,6, the Frank-Oseen free energy density6,7 can be defined
as

F =
K
2
(∇ ·Q)2. (3)

where K is the elastic constant.
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Then the total elastic stress arising from the orientational elasticity has the form

πelastic = −∇P+2λ

(
Q+

I
3

)
(Q : H)

−λH ·
(

Q+
I
3

)
−λ

(
Q+

I
3

)
·H

−∇Q :
(

δF

δ∇Q

)
+Q ·H−H ·Q.

(4)

where F =
∫

F d3r is the total free energy of the system. In eqn. (4), the term P refers to the isotropic
pressure that includes the contribution from the thermodynamic potential F , and λ is the flow
aligning parameter. The parameter λ is related to the shape of the active entities and indicates the
tumbling or aligning nature of these entities in a background shear flow. λ > 0 represents elongated
or rod-like particles, λ = 0 is for spherical particles and λ < 0 represents disk-like particles8. H
given in eqn. 4 is the molecular potential field and can be written as variational derivative of the
total free energy F ,

H =−δF

δQ
+

I
3

Tr
(

δF

δQ

)
. (5)

The last contribution, which arises from the force fields generated by the active entities and which
distinguishes active liquid crystals from their passive counterparts is the active stress9:

πactive =−ζ Q (6)

where ζ is the activity coefficient, and ζ < 0 for contractile systems and ζ > 0 for extensile systems.
A mixture of actin filaments and myosin motors can behave as contractile active gel10. An example
of an extensile system is a suspensions of microtubule bundles powered by kinesin motor proteins11.
In the literature dealing with collective motion of microswimmers, the contractile and extensile
systems are known as puller and pusher type swimmers respectively. As an example, the alga
Chlamydomonas is a contractile (or a puller) and the bacterium Escherichia coli is an extensile (or a
pusher) swimmer.

Whereas eqns 1,2 (in the main article) together represent the hydrodynamics of the flow, the
order parameter dynamics can be expressed as6,12

(∂t +u ·∇)Q−S = ΓH (7)

where Γ is orientational diffusivity and S is the generalised advection term

S = (λE+Ω) ·
(

Q+
I
3

)
+

(
Q+

I
3

)
· (λE−Ω)

−2λ

(
Q+

I
3

)
(Q : ∇u).

(8)

In the above equation, Ω = 1
2(∇u>−∇u) is the vorticity tensor, the antisymmetric part of the

velocity gradient tensor. This generalised advection term S represents how the orientational order
parameter field is deformed and rotated with the strain rate and vorticity arising from the flow field.
We note that eqn. 3 from the main article is repeated as eqn. 7 in the SI.

To summarise, eqn. 1,2 and 3 (in the main article) govern active nematohydrodynamics: the flow
field influences the dynamics of the Q tensor while the passive and active stresses arising from the
orientational order affect the fluid flow thus establishing a two way coupling between the flow and
the microstructure fields of the active nematic fluid.
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S2 Methods
S2.1 Simulation domain

The simulation domain is depicted in Fig. S1. The two dimensional system represents the active
nematic confined in a channel in the x−y plane. Channel walls are parallel to x axis. The simulation
box is discretised into square elements of size (∆x×∆y). The small black circles represent the grid
points (xn,yn).

S2.2 Discrete Fourier transform

To capture the essential features of the complex flow fields generated by an active nematic fluid
in a channel we analyze the velocity field in Fourier space. The channel used in the simulations
is periodic only in the x-direction (Fig. S1), and therefore, the Fourier transform is applied only in
the x-direction, on the instantaneous flow fields. However, as described below, we perform this 1-D
analysis at all transverse locations, y, and at different times, t, to calculate an average value, thus
obtaining a mean representation of both spatially and temporally varying features of the flow field.

Since the numerical solution is discrete, we employ discrete Fourier transforms (DFT). Consider
the velocity field u as a function of the coordinate x, for a given transverse location y in the channel
and a fixed time t. By Fourier transforming, we can write each component of the velocity field as a
superposition of sinusoidal waves. Thus, the x and y components of velocity field ux and uy can be
written as,

ux(x)|y,t = a0 + ∑
k 6=0

ak sin(kx+ψux(k))

uy(x)|y,t = b0 + ∑
k 6=0

bk sin(kx+ψuy(k))
(9)

where a0 and b0 are the amplitudes corresponding to k = 0 mode, ak and bk are the amplitudes
corresponding to the kth wave number and ψux(k) and ψuy(k) are the arbitrary phase factors. The
notation |y,t indicates that ux and uy are calculated when y and t are fixed. It may be noted that
the amplitudes a0 and b0 give the non-oscillatory parts (the constant contributions) of ux and uy

respectively.
Flow circulations and vortices are characteristic aspects of complex flow states generated by an

active nematic fluid. Therefore analyzing the field variable vorticity, defined as the curl of velocity
field ω = ∇× u, which quantifies the local rotationality of the fluid elements, is also helpful. In
two dimensions, the only non-zero component of vorticity is ωz, oriented normal to the plane under
consideration. This vorticity field can also be Fourier transformed to obtain

ωz(x)|y,t = c0 + ∑
k 6=0

ck sin(kx+ψω(k)) (10)

x

y

z

  l

 w

x1 xl

y1

yw

yn

Figure S1 Schematic of the domain used in the simulations. The domain is periodic along the x direction and
confined by parallel plates at the top and bottom, thus representing a two-dimensional channel.
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where c0 and ck are the amplitudes corresponding to 0th and kth modes respectively and ψω(k) is
the associated arbitrary phase.

Further, it is useful to define two quantities φ0 and φ max
k from the Fourier amplitudes of the x-

component of the velocity field (ux),

φ0 = [φk]k=0 and φ
max
k = Max

[
φk,k 6=0

]
(11)

where φk is the space-time average of the amplitude ak(yn, t) corresponding to kth mode obtained
from the discrete Fourier transform of ux(x) (defined in eqn (9)). φk is calculated as

φk =
1
m

tm

∑
t=t1

(
1
w

w

∑
n=1

ak(yn, t)

)
. (12)

In other words, the spatial average of ak(yn, t) is taken over w grid points spanning the channel
width (in the y direction) and the time average is performed over m snapshots of the velocity field,
indicated by (t1, t2, .., tm). In our calculations, we choose m = 10. The quantity φ0 is the space -
time average of the Fourier amplitude of the k = 0 mode. Physically it represents the average
fluid velocity along the channel length (here along the x axis). φ max

k is the maximum among the
averaged amplitudes for k 6= 0 modes. This quantity provides the amplitude of the most dominant
wave constituting the flows. In our work, we used the Fast Fourier Transform (FFT) technique to
calculate the DFT.

This analysis in Fourier space also allows us to identify the characteristic length scale associated
with the complex flow fields exhibited by channel-confined active nematics. This characteristic
length, LF , is defined as the wavelength 1/k (according to the convention adopted in FFT) corre-
sponding to the maximum Fourier amplitude among the k 6= 0 modes. Thus, corresponding to the
Fourier transform of ux, uy and ωz, the three characteristic lengths that emerge in the analysis are

Lux
F =

1
kmax

ux

, Luy
F =

1
kmax

uy

, and Lωz
F =

1
kmax

ωz

(13)

where kmax
ux

, kmax
uy

and kmax
ωz

are the wavenumbers corresponding to the maximum in Fourier ampli-
tude. The maxima are identified by analysing the space-time average values of Fourier amplitudes,
for example kmax

ux
is obtained from φk calculated according to eqn 12. A similar procedure is followed

to calculate kmax
uy

and kmax
ωz

.

S2.3 Correlation functions

To understand the spatial correlation of the flow fields the following quantities are calculated. Due
to the confinement, only the correlation along the channel length (x - direction) is considered. Thus,
for two points separated by a distance r along the channel length, the one-dimensional correlation
for the longitudinal component of velocity Cuxux(r, t), the transverse component of velocity Cuyuy(r, t),
and the vorticity Cωzωz(r, t) are defined, respectively, as

Cuxux(r, t) =
〈ux(xn,yn, t)ux(xn + r,yn, t)〉

〈u2
x(xn,yn, t)〉

Cuyuy(r, t) =
〈uy(xn,yn, t)uy(xn + r,yn, t)〉

〈u2
y(xn,yn, t)〉

Cωzωz(r, t) =
〈ωz(xn,yn, t)ωz(xn + r,yn, t)〉

〈ω2
z (xn,yn, t)〉

.

(14)

Here 〈...〉 represents averaging over all points along the x axis. The correlations are calculated for a
fixed value of yn and for a time instant t in the steady states.
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For comparison, we also calculate correlation functions of the fluid flows observed in unconfined
active nematic systems in two dimensions. Again, defining for the velocity and the vorticity field,
they are,

Cb
uu(r, t) =

〈u(xn,yn, t) ·u(xn + rx,yn + ry, t)〉
〈u2(xn,yn, t)〉

Cb
ωzωz

(r, t) =
〈ωz(xn,yn, t)ωz(xn + rx,yn + ry, t)〉

〈ω2
z (xn,yn, t)〉

(15)

where r =
√

r2
x + r2

y is the distance between two points in the 2d plane and averaging 〈...〉 is done
for all the points in that plane.

Similarly to the length scales defined in section S2.2, the correlation functions also provide char-
acteristic length scales of the flow fields. We define the characteristic length Lc as time average of
twice the distance r at which the correlation function decays to its first minimum i.e. if rmin is the
distance where correlation function has its first minimum then we can write Lc as 〈2rmin(t)〉 where
〈...〉 indicates time averaging. Therefore, Lc measures the length over which velocity and vorticity
patterns repeat in the flow fields for oscillatory and dancing flow states (see Fig. 1 (b,c) in the main
article). The two length scales corresponding to the velocity and vorticity field are denoted as Lu

c
and Lωz

c . In a similar fashion, for confined systems, the characteristic lengths Lux
c , Luy

c and Lωz
c are

obtained from the velocity-velocity correlation for x and y components of the velocity field, and the
vorticity field respectively.

 k w

 Fourier amplitudes (k ≠ 0)

 ⟨a
k⟩

⟨b k
⟩

⟨c k
⟩

 Correlation functions

r /w

C u
xu

x
C u

yu
y

C ω
zω

z

 0

 0.006

 0.012

 0  1  2  3  4  5  6  7  8  9  10

c = 0.03
c = 0.04
c = 0.05
c = 0.06
c = 0.07

 0

 0.005

 0.01

 0  1  2  3  4  5  6  7  8  9  10

c = 0.03
c = 0.04
c = 0.05
c = 0.06
c = 0.07

 0

 0.003

 0.006

 0  1  2  3  4  5  6  7  8  9  10

c = 0.03
c = 0.04
c = 0.05
c = 0.06
c = 0.07

a

 0

 0.5

 1

 0  0.5  1  1.5  2

c = 0.03
c = 0.04
c = 0.05
c = 0.06
c = 0.07

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

c = 0.03
c = 0.04
c = 0.05
c = 0.06
c = 0.07

 0

 0.5

 1

 0  0.5  1  1.5  2

c = 0.03
c = 0.04
c = 0.05
c = 0.06
c = 0.07

b

c

d

e

f

Figure S2 Fourier amplitudes and correlation functions of the flow field corresponding to localised active turbu-
lence. The left side panels show the space-time average of Fourier amplitudes (k 6= 0) (a) 〈ak〉, (b) 〈bk〉 and (c)
〈ck〉 corresponding to ux(x), uy(x) and ωz(x) respectively, at different activities ζ . Panels on the right hand side
shows the corresponding, time-averaged 1D correlation functions. Velocity-velocity correlation functions Cuxux and
Cuyuy are shown in (d) and (e) respectively and the vorticity-vorticity correlation Cωzωz is shown in (f). Note that
the correlation functions are evaluated at a fixed y location, yn/w = 0.525, close to the channel centre line.
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Figure S3 Normalised power spectra for ux, uy and ωz are shown in the k−ζ plane in (a), (b) and (c) respectively.
In all plots, the base colour blue indicates zero power whereas yellow depicts maximum power. White dashed lines
demarcate different flow regions, (iii) dancing flow, (iv) localised active turbulence and (v) fully-developed active
turbulence.

S3 Characteristic lengths of localised active turbulence for varying ac-
tivity

In Fig. 3, it is shown that both oscillatory and dancing flow states have only one characteristic length
scale that can be measured from the Fourier analysis of the flow field, i.e, Lux

F . Similar analysis on
uy and ωz show that both Luy

F and Lωz
F are also equal to Lux

F . Moreover, this characteristic length
was found to be independent of activity. However such inferences could not be drawn categorically
for localised active turbulence as it exhibited a bimodal distribution with only a shallow trough in
between the peaks, when ux(x) was analyzed in Fourier space (Fig. 3 in the main article). Though
the overall features of the power spectrum was insensitive to the variation in ζ , it was not possible to
identify a characteristic length Lux

F corresponding to localised active turbulence. The details change
as we analyze uy(x) and ωz(x) (see Fig. S3(b,c)) and hence we further analyze the spectrum of
velocity field in localised active turbulence in this section. In order to understand the relevance of
these length scales and the nature of localised active turbulence in the channel, we also plot the
correlation functions of ux(x), uy(x) and ωz(x).

As shown in Fig. S2(a), the Fourier amplitudes 〈ak〉 show a wide span in k space at all activities.
The spectra are bimodal as observed earlier in Fig. 3 (in the main article) but the peaks are not very
distinct as the Fourier amplitudes are very close to each other. The two peaks in 〈ak〉 correspond
to two length scales. (i) kw ≈ 0 represents a length comparable to channel length (l) and (ii)
kw ≈ 1.0 corresponds to a length scale the same as the channel width w. An important point to
be noted is that, as ζ increases, k ≈ 0 becomes the more dominant mode among the two maxima
(see Fig. S3(a)). In Fig. S2(b), average Fourier amplitudes 〈bk〉 (which correspond to uy(x)) show a
different type of spread over k space with a characteristic maximum in the spectrum at all activities.
The maxima are located at kw ≈ 1.0, i.e, at a length scale corresponding to the channel width.
Similar to 〈bk〉, though less distinct, there exists a peak in 〈ck〉 as well, as shown in Fig. S2(c). So
to summarise, the analysis of ux shows that the dominant wavelength corresponds to the channel
length or width (Lux

F ≈ l or w) whereas analysis of uy and ωz show the dominant lengths as the
confinement width (Luy

F ≈ w and Lωz
F ≈ w) for localised active turbulent flows.

In order to gain further physical insights into the range of length scales observed in Fourier space
corresponding to localised active turbulence, we now discuss the time averaged 1D correlation
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functions, Cuxux , Cuyuy and Cωzωz . All these correlation functions decay with r as shown in Fig. S2(d, e,
f). The decay is expected as the velocity and vorticity field associated with localised active turbulent
flow are irregular as shown in Fig. 1(d). However there is a distinct difference in the correlation
function for ux compared to that of uy and ωz. The correlation functions Cuyuy and Cωzωz , shown in
Fig. S2(e) and Fig. S2(f) respectively, decay, then cross zero and show a negative correlation before
decaying to zero completely. This occurs irrespective of the value of the activity (ζ ). In contrast, the
correlation functions Cuxux shown in Fig. S2(d) reach zero only at much larger distances (r/w > 2)
for all values of the activity coefficient. In other words, the correlations in ux can span over long
distances, sometimes even comparable to the channel length. The reason for this long ranged
correlation in ux but absent in uy and ωz is likely to be the fluid jets present in the localised active
turbulent flow state. It is interesting to note that, for the same reason, the first minima of Cuxux are
widely scattered between r/w ≈ 0.5 and r/w ≈ 5.0. On the other hand, Cuyuy and Cωzωz show well
defined first minima at all activities and both correlation functions decay to zero for r/w > 1.
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Figure S4 Characteristic length scales (a) LF and (b) Lc corresponding to variation in elasticity (K) for ζ = 0.024,
l = 200 and w = 20 and length scales (c) LF and (d) Lc for variation of channel width (w) for ζ = 0.01, K = 0.01
and l = 200. In the left panel Lux

F (black), Luy
F (red) and Lωz

F (yellow) are extracted from Fourier amplitudes.
On the right panel, Lux

c (black), Luy
c (red) and Lωz

c (yellow) are from correlation functions. LF and Lc are non-
dimensionalised by the channel width w in (a) and (b). The black dashed lines demarcate different flow states,
namely (0), (i), (ii), (iii), (iv) and (v) indicate no flow, unidirectional flow, oscillatory flow, dancing flow, localised
active turbulence and fully-developed active turbulent flow respectively.

The characteristic length Luy
c corresponding to the correlation function Cuyuy (defined as twice

the first minimum) is approximately the same as the channel width, Luy
c ≈ w. In other words, the
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correlation function for the transverse component of velocity uy has a characteristic length scale
that is comparable to confinement length w. A similar behaviour is observed for Lωz

c , the length
scale corresponding to correlation of vorticity. In other words, Lωz

c ≈ w, and the average vortex
size (size of a clockwise and an anti-clockwise vortex pair) for localised active turbulent flow in 2D
confinement is comparable to the channel width w irrespective of the activity (ζ ).

In short, although localised active turbulence is seemingly chaotic, it is still characterised by well-
defined length scales under 2D confinement. Analysis in both Fourier space and from correlation
functions show that the longitudinal component of velocity ux exhibits a characteristic length scale
(Lux

F or Lux
C ) between the width (w) and length (l) of the channel while the transverse component uy

and vorticity ωz have characteristic dimensions of the width of the channel. Thus, depending upon
the analysis, mode of selection and the sample, analysis of ux gives varying values between ≈ w and
≈ l while analysis of uy or ωz gives a unique value as the characteristic length scale of the flow.

S4 Characteristic lengths of flow states when elasticity and channel
width are varied

Fig. S4(a, b) illustrate results for the characteristic length scales LF and Lc when the elasticity K is
varied (ζ = 0.024, l = 200 and w = 20 are kept fixed). For low values of the elastic constant, the
active nematic exhibits fully developed turbulent flow (marked as (v)). With increase in elasticity,
the flow turns to localised active turbulence (iv) and then to dancing (iii), oscillatory (ii), and
unidirectional flow (i) followed by a no flow (0) state. Despite these changes in the flow states,
it is interesting to note that characteristic lengths of the flow Lux

c , Luy
c and Lωz

c obtained from the
correlation functions are again close to the channel width w except in fully developed turbulent
flow (v) where the characteristic lengths start decreasing from w as K is decreased. On the other
hand, Lux

F , Luy
F and Lωz

F show larger variations from w, with values varying between w and l.
Fig. S4(c, d) show the variation in LF and Lc when the width of the channel w is varied but

keeping other parameters fixed (ζ = 0.01, K = 0.01 and l = 200). It may be noted from Fig. S4(d)
that the characteristic lengths Lc increase with increasing w up to a certain channel width (w≈ 60)
beyond which they saturate to a plateau and they do not increase further. The transition from the
linear increase with w to the plateau occurs irrespective of whether it is measured from ux, uy or ωz.
However it is difficult to identify the transition from Fig. S4(c), i.e when length scales are measured
from Fourier analysis since LF is domain size dependent and shows large standard deviations.

Analyzing the transition in Fig. S4(d) more closely, we note that among the all Lc, Lωz
c is a con-

venient choice to demarcate the transition to fully developed active turbulence since (i) it starts
saturating at the transition point between localised active turbulence and fully developed active
turbulence and plateaus at Lωz

c (bulk) immediately beyond the transition (ii) the transition occurs
when Lωz

c ≈ w≈ Lωz
c (bulk). The other two characteristic length scales based on the velocity field Lux

c
and Luy

c also follow Lωz
c but saturate to Lu

c (bulk), the characteristic length scale corresponding the
velocity of the bulk fluid.

S5 Temporal evolution of the characteristic lengths for various flow
states

Considering that the flow evolves through different flow states before reaching a final state, and
the characteristic length scale does not change for various flow states at steady state, it is natural
to ask whether the different unsteady flow states exhibit a single characteristic length scale as well.
Therefore we monitor the temporal evolution of the flow before reaching the final steady state of
the different flow states. The results are presented in Fig. S5. Here, the characteristic lengths
Lux

c , Luy
c and Lωz

c , the correlation lengths for ux, uy and ωz, are shown as a function of time as the
system evolves to a steady state for two different activities (a) ζ = 0.005 and (b) ζ = 0.0245. For
ζ = 0.005, the initial no-flow state evolves through a unidirectional and oscillatory flow before
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reaching the dancing flow state. Similarly for ζ = 0.0245, the dancing flow prevails for some time
before attaining the localised active turbulent state. It is interesting to note that though the active
nematic undergoes these flow transition in time, the characteristic length scale corresponding to the
different flow states does not change and it remains comparable to the channel width w as shown
in Fig. S5. This observation leads us to propose that flow transitions in the channel-confined active
nematic are a consequence of instabilities as we discuss in section 3.4.
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Figure S5 Characteristic lengths of the flow field generated by a channel-confined active nematic as it evolves
from a no flow state to a steady flow state for (a) ζ = 0.005 and (b) ζ = 0.0245. In both panels, the vertical axis
represents lengths corresponding to correlation functions and the horizontal axis indicates time. The vertical dashed
lines indicates the flow transitions. In (a), the system exhibits an oscillatory state before reaching the dancing
state at steady state. In (b) the system exhibits the dancing state before reaching localised active turbulence at
steady state.
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