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1 Coupling between the bond-orientational order and positional correlations in the 

hexatic phase    
 

Below we reproduce the arguments presented in the paper by G. Aeppli and R. Bruinsma1 in order to show 
that the coupling between the density fluctuations and the bond-orientational (BO) order leads to the 
angular profile of the scattering peaks in the Hex-B phase described by the Voigt function (see also2). 
At the temperatures below the Sm-A – Hex-B phase transition, the positional correlations between the 
molecules in the Hex-B layers decay over a short distance 𝜉𝜉~𝑞𝑞0−1, while the BO order persists over much 
larger distances within single hexatic domains, Λ0−1 ≫ 𝑞𝑞0−1. Here 𝑞𝑞0 is a reciprocal vector corresponding 
to the average distance between the moleccules. This allows us to divide the Hex-B into the large cells 
located at point 𝒓𝒓 with a typical size of  Λ0−1, in which the two-component BO order parameter Ψ(𝒓𝒓) =
|Ψ(𝒓𝒓)|𝑒𝑒𝑖𝑖6𝜓𝜓(𝒓𝒓) has approximately constant amplitude |Ψ(𝒓𝒓)| and phase 𝜓𝜓(𝒓𝒓)1. We will also assume that 
the fluctuations of the amplitude |Ψ| of the BO order parameter are relatively small and within the mean-

field approximation it can replaced by its root-mean-square value 〈|Ψ|2〉1 2� . This means that only the 
phase 𝜓𝜓(𝒓𝒓) fluctuates between the cells. 
The free-energy functional of the Hex-B phase has three contributions, describing the positional order, 
the bond-orientational order and the coupling between them: 

𝐹𝐹 = 𝐹𝐹𝛥𝛥𝛥𝛥[𝛥𝛥𝛥𝛥] + 𝐹𝐹𝛹𝛹[𝛹𝛹] + 𝐹𝐹𝛥𝛥𝛥𝛥−𝛹𝛹[𝛥𝛥𝛥𝛥,𝛹𝛹]. (S1) 

Let us consider only the in-plane fluctuations of the density, and assume that the molecular layers are 
perfectly flat. In this case, the first term describing the short-range positional order within a molecular 
layer can be represented as an integral over the Fourier components of the in-plane density fluctuations 
δ𝛥𝛥(𝒒𝒒⊥) 

𝐹𝐹δ𝛥𝛥[δ𝛥𝛥] = �𝑑𝑑𝒒𝒒⊥{𝑎𝑎 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2}(δ𝛥𝛥(𝒒𝒒⊥))2. (S2) 
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where the integration is performed in the vicinity of the in-plane peak 𝑞𝑞⊥~𝑞𝑞⊥03.  Here we used polar 
coordinates for the scattering vector 𝒒𝒒 = (𝑞𝑞𝑧𝑧,𝒒𝒒⊥) = (𝑞𝑞𝑧𝑧, 𝑞𝑞⊥,𝜑𝜑). Coefficients 𝑎𝑎 and 𝑏𝑏 are the coefficients 
of Landau expansion of the free energy. 
Within an individual cell, the two-component BO order parameter Ψ(𝒓𝒓) = |Ψ(𝒓𝒓)|𝑒𝑒𝑖𝑖6𝜓𝜓(𝒓𝒓) is approximately 
a constant, so the contribution from the second term 𝐹𝐹𝛹𝛹[𝛹𝛹] in eqn (S1) is zero. We will take the 
fluctuations of the phase 𝜓𝜓(𝒓𝒓) between the cells into account later (see eqn (S7)). 
The third term can be written as a functional of a real-valued function 𝑓𝑓 of three variables1 

𝐹𝐹δ𝛥𝛥−Ψ[Δ𝛥𝛥,Ψ] = �𝑑𝑑𝒒𝒒⊥𝑓𝑓 �𝑞𝑞, 〈|Ψ|2〉1 2� , cos[6𝜑𝜑 − 6𝜓𝜓(𝒓𝒓)]� (δ𝛥𝛥(𝒒𝒒⊥))2. (S3) 

From the Fourier representation of the free energy (eqns (S1-3)), we can find the a certain component 
δ𝛥𝛥(𝒒𝒒⊥) of the density fluctuations to the free energy and evaluate the mean squared amplitude of the 
density fluctuation within a single cell as 

〈|δ𝛥𝛥(𝒒𝒒⊥)|2〉 =
∫𝑑𝑑(δ𝛥𝛥 )exp �−

𝐹𝐹𝑞𝑞
𝑘𝑘𝐵𝐵𝑇𝑇

� |δ𝛥𝛥|2

∫ 𝑑𝑑(δ𝛥𝛥 )exp �−
𝐹𝐹𝑞𝑞
𝑘𝑘𝐵𝐵𝑇𝑇

�
=

𝑘𝑘𝐵𝐵𝑇𝑇
𝑎𝑎 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 + 𝑓𝑓

. (S4) 

The same result can be obtained without direct evaluation of the integrals in eqn (S4), but noticing that 
both contributions to the free energy in eqns (S2) and (S3) are quadratic with respect to the fluctuations 
δ𝛥𝛥(𝒒𝒒⊥), which allows one to use classical equipartition theorem.  
To obtain the total structure factor of the hexatic films, the result (S4) has to be averaged over the 
fluctuations of the BO order parameter Ψ(𝒓𝒓) , i.e. over the hexatic degree of freedom. In the absence of 
the coupling term (𝑓𝑓 ≡ 0), the resulting structure factor will be described by a uniform scattering ring 
with a Lorentzian radial cross section, similar to the Sm-A phase. In the Hex-B phase, 𝑓𝑓 ≠ 0 and to describe 
the corresponding structure factor, the small fluctuations of the phase 𝜓𝜓(𝒓𝒓) should be taken into account.  
To do this it is convenient to use an angular Fourier expansion of  〈|δ𝛥𝛥(𝒒𝒒⊥)|2〉 over �𝜑𝜑 − 𝜓𝜓(𝒓𝒓)� 

〈|δ𝛥𝛥(𝒒𝒒⊥)|2〉 = � 𝑆𝑆6𝑝𝑝𝑒𝑒6𝑖𝑖𝑝𝑝�𝜑𝜑−𝜓𝜓(𝒓𝒓)�,
+∞

𝑝𝑝=−∞

 (S5) 

with the Fourier coefficients 

𝑆𝑆6𝑝𝑝 =
1
𝜋𝜋

3�
� 𝑑𝑑𝑑𝑑𝑒𝑒−6𝑖𝑖𝑝𝑝𝑖𝑖

𝑘𝑘𝐵𝐵𝑇𝑇

𝑎𝑎 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 + 𝑓𝑓 �𝑞𝑞, 〈|Ψ|2〉1 2� , cos 6𝑑𝑑�
.

𝜋𝜋
6�

−𝜋𝜋 6�

 (S6) 

 
Let us represent the phase 𝜓𝜓(𝒓𝒓) of the BO order parameter fluctuating around the mean value 𝜓𝜓0 as 
𝜓𝜓(𝒓𝒓) = 𝜓𝜓0 + 𝛿𝛿𝜓𝜓(𝒓𝒓),  and perform averaging over the fluctuations 𝛿𝛿𝜓𝜓(𝒓𝒓) independently for each term in 
the angular Fourier expansion 

𝑆𝑆(𝒒𝒒⊥) = � 𝑆𝑆6𝑝𝑝𝑒𝑒6𝑖𝑖𝑝𝑝(𝜑𝜑−𝜓𝜓0)〈𝑒𝑒−6𝑖𝑖𝑝𝑝𝑖𝑖𝜓𝜓(𝒓𝒓)〉.
+∞

𝑝𝑝=−∞

 (S7) 
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We will consider the case of low temperature hexatic phase, when the fluctuations are small, 𝛿𝛿𝜓𝜓(𝒓𝒓) ≈
0. Thus, we can use the Taylor expansion and keep only the first non-zero term 

〈𝑒𝑒−6𝑖𝑖𝑝𝑝𝑖𝑖𝜓𝜓(𝒓𝒓)〉 ≈ 〈1 − 6𝑝𝑝𝑝𝑝𝛿𝛿𝜓𝜓(𝒓𝒓) −
�6𝑝𝑝𝛿𝛿𝜓𝜓(𝒓𝒓)�2

2
〉 = 1 − 18𝑝𝑝2〈𝛿𝛿𝜓𝜓2〉 ≈ 𝑒𝑒−18𝑝𝑝2〈𝑖𝑖𝜓𝜓2〉. (S8) 

Here we assumed that the mean value 〈𝛿𝛿𝜓𝜓(𝒓𝒓)〉 = 0 because the fluctuations 𝛿𝛿𝜓𝜓(𝒓𝒓) and −𝛿𝛿𝜓𝜓(𝒓𝒓) have 
the same contribution to the free-energy and therefore are equally probable. The root-mean-square value 
〈𝛿𝛿𝜓𝜓2〉 = 〈(𝜓𝜓 − 𝜓𝜓0)2〉 can be estimated in the frames of the 𝑥𝑥 − 𝑦𝑦 model in 2D and 3D4,5. 
Combining eqns (S6) and (S7), the structure factor can be rearranged as 

 𝑆𝑆(𝒒𝒒⊥) = � 𝑆𝑆6𝑝𝑝𝑒𝑒6𝑖𝑖𝑝𝑝(𝜑𝜑−𝜓𝜓0)𝑒𝑒−18𝑝𝑝2〈𝑖𝑖𝜓𝜓2〉
+∞

𝑝𝑝=−∞

 

       =
3
𝜋𝜋

� 𝑑𝑑𝑑𝑑 �
𝑘𝑘𝐵𝐵𝑇𝑇

𝑎𝑎 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 + 𝑓𝑓 �𝑞𝑞, 〈|Ψ|2〉1 2� , cos 6𝑑𝑑�
� 𝑒𝑒−6𝑖𝑖𝑝𝑝(𝜑𝜑−𝜓𝜓0−𝑖𝑖)𝑒𝑒−18𝑝𝑝2〈𝑖𝑖𝜓𝜓2〉
+∞

𝑝𝑝=−∞

�

𝜋𝜋
6�

−𝜋𝜋 6�

 

(S9) 

It is easy to check that the sum under the integral converges to a Gaussian function (compare with eqns 
(S22-S27) in the next section): 

3
𝜋𝜋
� 𝑒𝑒−6𝑖𝑖𝑝𝑝(𝜑𝜑−𝜓𝜓0−𝑖𝑖)𝑒𝑒−18𝑝𝑝2〈𝑖𝑖𝜓𝜓2〉
+∞

𝑝𝑝=−∞

=
1

�2𝜋𝜋〈𝛿𝛿𝜓𝜓2〉
� exp �−

�𝑑𝑑 − (𝜑𝜑 − 𝜓𝜓0)− 𝜋𝜋
3 𝑛𝑛�

2

2〈𝛿𝛿𝜓𝜓2〉 �
∞

𝑛𝑛=−∞

. (S10) 

Since integration over the angular variable 𝑑𝑑 in eqn (S9) is performed over a limited range from −𝜋𝜋
6

 to 𝜋𝜋
6

, 

only one term in the sum over 𝑛𝑛 will contribute to the hexatic structure factor (because 〈𝛿𝛿𝜓𝜓2〉 is small 
and there is no overlap between various terms). This can be taken into account by selecting the reference 
axis in such a way that 𝜓𝜓0 = 0 and considering the scattering in the same direction, i.e. |𝜑𝜑| < 𝜋𝜋/6. In this 
case, we can rewrite the hexatic structure factor as 

𝑆𝑆(𝒒𝒒⊥) =
𝑘𝑘𝐵𝐵𝑇𝑇

�2𝜋𝜋〈𝛿𝛿𝜓𝜓2〉
� 𝑑𝑑𝑑𝑑

𝑒𝑒
−(𝑖𝑖−𝜑𝜑)2
2〈𝑖𝑖𝜓𝜓2〉

𝑎𝑎 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 + 𝑓𝑓 �𝑞𝑞, 〈|Ψ|2〉1 2� , cos 6𝑑𝑑�

𝜋𝜋
6�

−𝜋𝜋 6�

. (S11) 

Due to the sharp Gaussian peak in the nominator, the main contribution to 𝑆𝑆(𝒒𝒒⊥) comes from the region 
around 𝑑𝑑 ≈ 0. This allows us to expand the coupling function 𝑓𝑓 into the Taylor series 

𝑓𝑓 �𝑞𝑞, 〈|Ψ|2〉1 2� , cos 6𝑑𝑑� ≈ 𝑓𝑓0 + 𝑓𝑓2𝑑𝑑2 (S12) 

The integration region in (S11) can be formally extended to infinity, because contribution from the large 

angles (|𝑑𝑑| > 𝜋𝜋/6 ≫ �〈𝛿𝛿𝜓𝜓2〉) is negligibly small:  

𝑆𝑆(𝒒𝒒⊥) =
𝑘𝑘𝐵𝐵𝑇𝑇

�2𝜋𝜋〈𝛿𝛿𝜓𝜓2〉
� 𝑑𝑑𝑑𝑑

𝑒𝑒
−(𝑖𝑖−𝜑𝜑)2
2〈𝑖𝑖𝜓𝜓2〉

𝑎𝑎 + 𝑓𝑓0 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 + 𝑓𝑓2𝑑𝑑2

+∞

−∞

. (S13) 
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If 〈𝛿𝛿𝜓𝜓2〉 ≪ (𝑎𝑎 + 𝑓𝑓0)/𝑓𝑓2, one can expand the denominator into the Taylor series and keep only the first 
term 

1
𝑎𝑎 + 𝑓𝑓0 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 + 𝑓𝑓2𝑑𝑑2

≈
1

𝑎𝑎 + 𝑓𝑓0 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 �1 −
𝑓𝑓2𝑑𝑑2

𝑎𝑎 + 𝑓𝑓0 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2� 
(S14) 

After this simplification, the integral (S13) can be easily evaluated, the radial cross section (𝜑𝜑 = 0) of the 
diffraction peak from the hexatic phase can be described by a Lorentzian function  

𝑆𝑆(𝑞𝑞⊥) =
𝑘𝑘𝐵𝐵𝑇𝑇

𝑎𝑎 + 𝑓𝑓0 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 �1 −
𝑓𝑓2〈𝛿𝛿𝜓𝜓2〉

𝑎𝑎 + 𝑓𝑓0 + 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2� 

                 ≈
𝑘𝑘𝐵𝐵𝑇𝑇

𝑎𝑎 + 𝑓𝑓0 + 𝑓𝑓2〈𝛿𝛿𝜓𝜓2〉+ 𝑏𝑏(𝑞𝑞⊥ − 𝑞𝑞⊥0)2 ∝
1

𝛾𝛾2 + (𝑞𝑞⊥ − 𝑞𝑞⊥0)2 

(S15) 

with the half width at half maximum 𝛾𝛾 = �(𝑎𝑎 + 𝑓𝑓0 + 𝑓𝑓2〈𝛿𝛿𝜓𝜓2〉)/𝑏𝑏.  
The azimuthal profile through the maximum of the diffraction peak (𝑞𝑞⊥ = 𝑞𝑞⊥0) is given by the Voigt 
function which is a convolution of the Gaussian and Lorentzian functions 

𝑆𝑆(𝜑𝜑) =
𝑘𝑘𝐵𝐵𝑇𝑇

�2𝜋𝜋〈𝛿𝛿𝜓𝜓2〉
� 𝑑𝑑𝑑𝑑

𝑒𝑒
−(𝑖𝑖−𝜑𝜑)2
2〈𝑖𝑖𝜓𝜓2〉

𝑎𝑎 + 𝑓𝑓0 + 𝑓𝑓2𝑑𝑑2
= 𝜋𝜋

𝑘𝑘𝐵𝐵𝑇𝑇
�𝑓𝑓2(𝑎𝑎 + 𝑓𝑓0)

𝐺𝐺(𝜑𝜑;𝜎𝜎) ∗ 𝐿𝐿(𝜑𝜑; 𝜅𝜅)
+∞

−∞

 

                          =
𝑘𝑘𝐵𝐵𝑇𝑇𝜋𝜋

�𝑓𝑓2(𝑎𝑎 + 𝑓𝑓0)
 𝑉𝑉(𝜑𝜑;𝜎𝜎, 𝜅𝜅). 

(S16) 

Here the Gaussian function  

𝐺𝐺(𝜑𝜑;𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒−

𝜑𝜑2
2𝜎𝜎2   (S17) 

is defined by the parameter 𝜎𝜎 = �〈𝛿𝛿𝜓𝜓2〉 which depends only on the mean squared fluctuations of the 
phase 𝜓𝜓(𝒓𝒓). The Lorentzian function 

𝐿𝐿(𝜑𝜑; 𝜅𝜅) =
𝜅𝜅

𝜋𝜋(𝜑𝜑2 + 𝜅𝜅2) (S18) 

has the half width at half maximum 𝜅𝜅 = �(𝑎𝑎 + 𝑓𝑓0)/𝑓𝑓2 which has contribution from the short-range 
position order (coefficient 𝑎𝑎 in the Landau expansion of the free energy (2)) and the coupling between 
the positional and BO order (coefficients 𝑓𝑓0 and 𝑓𝑓2 in eqn (S12)). 
 
 
 
 
  



 5 

 
2 Angular profile of the hexatic peak in the multicritical scaling theory    
 
A natural way to describe the BO order in the hexatic phase is to expand the azimuthal dependence of the 
structure factor into the Fourier series6 

𝐼𝐼(𝑞𝑞,𝜑𝜑) = 𝐼𝐼0(𝑞𝑞) �1 + 2 � 𝐶𝐶6𝑚𝑚(𝑞𝑞) cos�6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)�
∞

𝑚𝑚=1

�, (S19) 

where the coefficients  0 ≤ 𝐶𝐶6𝑚𝑚 ≤ 1 depend on the degree of the orientational order. The multicritical 
scaling theory predicts the following relation between the coefficients 𝐶𝐶6𝑚𝑚 of different order 

𝐶𝐶6𝑚𝑚 = (𝐶𝐶6)𝑚𝑚+𝜆𝜆𝑚𝑚(𝑚𝑚−1),  (S20) 

where 𝜆𝜆 ≈ 0.3 for 3D hexatic phase,6,7 and 𝜆𝜆 ≈ 1 for 2D hexatic phase.4  
First, let us show that the series (S19) converges to a Gaussian function in the 2D case (𝜆𝜆 = 1). Indeed, 

1 + 2 � 𝐶𝐶6𝑚𝑚 cos�6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)�
∞

𝑚𝑚=1

= 1 + 2 � (𝐶𝐶6)𝑚𝑚2 cos�6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)�
∞

𝑚𝑚=1

 

                     = � (𝐶𝐶6)𝑚𝑚2
∞

𝑚𝑚=−∞

𝑒𝑒𝑖𝑖6𝑚𝑚(𝜑𝜑−𝜑𝜑0) = � exp �−𝑚𝑚2ln
1
𝐶𝐶6

+ 𝑝𝑝 ∙ 6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)�
∞

𝑚𝑚=−∞

. 

(S21) 

At the same time, the azimuthal profile of the six hexatic peaks, each described by a Gaussian function, 
can be written as 

𝐼𝐼𝐺𝐺(𝜑𝜑) =
𝐼𝐼0

√2𝜋𝜋𝜎𝜎2
� exp �−

�𝜑𝜑 − 𝜑𝜑0 −
2𝜋𝜋
6 𝑛𝑛�

2

2𝜎𝜎2 �
∞

𝑛𝑛=−∞

, (S22) 

 where 𝜑𝜑0 defines the angular position of the peaks with respect to some reference axis, and the term 
2𝜋𝜋
6
𝑛𝑛 appears due to the sixfold symmetry of the hexatic structure factor.  The periodic function (S22) can 

be expanded into the Fourie series  

𝐼𝐼𝐺𝐺(𝜑𝜑) = � 𝐶𝐶6𝑚𝑚𝑒𝑒𝑖𝑖6𝑚𝑚𝜑𝜑 
∞

𝑚𝑚=−∞

 (S23) 

with the Fourier coefficients 

𝐶𝐶6𝑚𝑚 =
1

2𝜋𝜋
6�

� 𝐼𝐼𝐺𝐺(𝜑𝜑)𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑𝑑𝑑𝜑𝜑

𝜑𝜑0+
𝜋𝜋
6

𝜑𝜑0−
𝜋𝜋
6

=
3𝐼𝐼0

𝜋𝜋√2𝜋𝜋𝜎𝜎2
� � exp �−

�𝜑𝜑 − 𝜑𝜑0 −
2𝜋𝜋
6 𝑛𝑛�

2

2𝜎𝜎2
− 𝑝𝑝6𝑚𝑚𝜑𝜑�𝑑𝑑𝜑𝜑

𝜑𝜑0+
𝜋𝜋
6

𝜑𝜑0−
𝜋𝜋
6

∞

𝑛𝑛=−∞

. 

(S24) 
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Assuming that the hexatic peaks are sharp and do not overlap, we can neglect all terms with 𝑛𝑛 ≠ 0 (they 
correspond to the peaks of 𝐼𝐼𝐺𝐺(𝜑𝜑) outside of the integration region). Then we can extend the region of 
integration to infinity 

𝐶𝐶6𝑚𝑚 =
3𝐼𝐼0

𝜋𝜋√2𝜋𝜋𝜎𝜎2
� exp �−

(𝜑𝜑 − 𝜑𝜑0)2

2𝜎𝜎2
− 𝑝𝑝6𝑚𝑚𝜑𝜑�𝑑𝑑𝜑𝜑,

+∞

−∞

 (S25) 

since the main contribution to the integral (S24) comes from the vicinity of the peak at 𝜑𝜑 = 𝜑𝜑0.  
Now substituting 𝜑𝜑 = 𝑡𝑡 ∙ 𝜎𝜎√2 + 𝜑𝜑0, we can evaluate the coefficients  

𝐶𝐶6𝑚𝑚 =
3𝐼𝐼0𝜎𝜎√2
𝜋𝜋√2𝜋𝜋𝜎𝜎2

𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑0𝑒𝑒−18𝜎𝜎2𝑚𝑚2 � 𝑒𝑒−�𝑡𝑡+𝑖𝑖3𝑚𝑚𝜎𝜎√2�
2
𝑑𝑑𝑡𝑡 =

3𝐼𝐼0
𝜋𝜋
𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑0𝑒𝑒−18𝜎𝜎2𝑚𝑚2 .

+∞

−∞

 (S26) 

Thus, the Fourier series (S23) can be written as 

𝐼𝐼𝐺𝐺(𝜑𝜑) =
3𝐼𝐼0
𝜋𝜋

� exp[−18𝑚𝑚2𝜎𝜎2 + 𝑝𝑝 ∙ 6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)] ,
∞

𝑚𝑚=−∞

 (S27) 

which coincides with the multicritical theory expansion (S21) up to the prefactor, assuming 𝐶𝐶6 = 𝑒𝑒−18𝜎𝜎2. 
Since the Fourier expansion is unique, we can conclude that the scaling law (S20) with 𝜆𝜆 = 1 (2D case) 
corresponds to the Gaussian shape of the hexatic peaks in the azimuthal direction. 
In the 3D case (𝜆𝜆 ≈ 0.3), the angular Fourier series in eqn (S19) can be written as 

1 + 2 � 𝐶𝐶6𝑚𝑚 cos�6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)�
∞

𝑚𝑚=1

= � (𝐶𝐶6)𝜆𝜆𝑚𝑚2+(1−𝜆𝜆)|𝑚𝑚|
∞

𝑚𝑚=−∞

𝑒𝑒𝑖𝑖6𝑚𝑚(𝜑𝜑−𝜑𝜑0) 

= � exp �−𝑚𝑚2𝜆𝜆ln
1
𝐶𝐶6
− |𝑚𝑚|(1 − 𝜆𝜆)ln

1
𝐶𝐶6

+ 𝑝𝑝 ∙ 6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)�
∞

𝑚𝑚=−∞

 

= � exp[−18𝑚𝑚2𝜎𝜎2 − 6𝜅𝜅|𝑚𝑚| + 𝑝𝑝 ∙ 6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)]
∞

𝑚𝑚=−∞

,                     

(S28) 

where the parameters 𝜎𝜎 and 𝜅𝜅 can be expressed through the parameters of the multicritical scaling 
theory: 

𝜎𝜎 = �
𝜆𝜆

18
ln

1
𝐶𝐶6

, 

𝜅𝜅 =
1 − 𝜆𝜆

6
ln

1
𝐶𝐶6

. 

(S29) 

Now the angular Fourier coefficients 𝐶𝐶6𝑚𝑚 are a product of exp[−𝑚𝑚2𝜎𝜎2], which corresponds to the Fourier 
coefficients of a Gaussian function (see the derivation above), and exp[−6𝜅𝜅|𝑚𝑚|], which corresponds to 
the Fourier coefficients of a Lorentzian function. Let us prove this by expanding the periodic Lorentzian 
function into the Fourier series 

𝐼𝐼𝐿𝐿(𝜑𝜑) = 𝐼𝐼0
𝜅𝜅
𝜋𝜋
�

1

�𝜑𝜑 − 𝜑𝜑0 −
2𝜋𝜋
6 𝑛𝑛�

2
+ 𝜅𝜅2

=
∞

𝑛𝑛=−∞

� 𝐶𝐶6𝑚𝑚𝑒𝑒𝑖𝑖6𝑚𝑚𝜑𝜑 
∞

𝑚𝑚=−∞

, (S30) 

and evaluating the Fourier coefficients in a similar way, as it was done for the Gaussian function in eqns 
(S24-S26): 
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𝐶𝐶6𝑚𝑚 =
1

2𝜋𝜋
6�

� 𝐼𝐼𝐿𝐿(𝜑𝜑)𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑𝑑𝑑𝜑𝜑

𝜑𝜑0+
𝜋𝜋
6

𝜑𝜑0−
𝜋𝜋
6

=
3𝜅𝜅𝐼𝐼0
𝜋𝜋2

� �
𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑

�𝜑𝜑 − 𝜑𝜑0 −
2𝜋𝜋
6 𝑛𝑛�

2
+ 𝜅𝜅2

𝑑𝑑𝜑𝜑

𝜑𝜑0+
𝜋𝜋
6

𝜑𝜑0−
𝜋𝜋
6

∞

𝑛𝑛=−∞

 

                   =
3𝜅𝜅𝐼𝐼0
𝜋𝜋2

�
𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑

(𝜑𝜑 − 𝜑𝜑0)2 + 𝜅𝜅2
𝑑𝑑𝜑𝜑

+∞

−∞

=
3𝜅𝜅𝐼𝐼0
𝜋𝜋2

𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑0 �
𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑

𝜑𝜑2 + 𝜅𝜅2
𝑑𝑑𝜑𝜑

+∞

−∞

 

                   =
3𝜅𝜅𝐼𝐼0
𝜋𝜋2

𝑒𝑒−𝑖𝑖6𝑚𝑚𝜑𝜑0
𝜋𝜋
𝜅𝜅
𝑒𝑒−𝜅𝜅|6𝑚𝑚| =

3𝐼𝐼0
𝜋𝜋
𝑒𝑒−6𝜅𝜅|𝑚𝑚|−𝑖𝑖6𝑚𝑚𝜑𝜑0 . 

(S31) 

Therefore, the Fourier expansion of the Lorentzian function (S30) can be written as 

𝐼𝐼𝐿𝐿(𝜑𝜑) =
3𝐼𝐼0
𝜋𝜋

� exp[−6𝜅𝜅|𝑚𝑚| + 𝑝𝑝 ∙ 6𝑚𝑚(𝜑𝜑 − 𝜑𝜑0)],
∞

𝑚𝑚=−∞

 (S32) 

proving that the term exp[−6𝜅𝜅|𝑚𝑚|] in eqn (S28) indeed corresponds to the Lorentzian function. 
Using the convolution theorem, we can expect that the Fourier series (S28), in which each term is equal 
to the product of the Fourier components of the Gaussian and Lorentzian functions, will converge to a 
convolution of these two functions.  
Therefore, from eqns (S19) and (S28) it follows that for the 3D hexatics the angular distribution of intensity 
can be written as  

𝐼𝐼𝑉𝑉(𝜑𝜑) = 𝐼𝐼0 � 𝑉𝑉 �𝜑𝜑 − 𝜑𝜑0 −
2𝜋𝜋
6
𝑛𝑛;𝜎𝜎, 𝛾𝛾�

∞

𝑛𝑛=−∞

, (S33) 

where 𝑉𝑉(𝜑𝜑;𝜎𝜎, 𝜅𝜅) is the Voigt function 

𝑉𝑉(𝜑𝜑;𝜎𝜎, 𝛾𝛾) = 𝐺𝐺(𝜑𝜑;𝜎𝜎) ∗ 𝐿𝐿(𝜑𝜑; 𝜅𝜅) = � 𝑑𝑑𝑑𝑑
𝑒𝑒−

𝑖𝑖2
2𝜎𝜎2

√2𝜋𝜋𝜎𝜎2

+∞

−∞

∙
𝜅𝜅
𝜋𝜋

(𝜑𝜑 − 𝑑𝑑)2 + 𝜅𝜅2
 , (S34) 

which is a convolution of a Gaussian 𝐺𝐺(𝜑𝜑;𝜎𝜎) and a Lorentzian 𝐿𝐿(𝜑𝜑; 𝜅𝜅) functions defined in eqns (S17-
S18). 
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