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1. YUAN POTENTIAL

To model the lipid bilayer membrane this work implements the orientation dependant lipid-lipid interaction
potential U(ri j,ni,n j) developed by Yuan et al. [1]. In this model, the lipid bilayer is modelled as a
one-particle-thick monolayer of CG particles, each representing a collection of lipids and having five
degrees of freedom: three translational and two rotational. The separation of two such pseudo-particles
i and j is given by r = |ri j|= |ri− r j| and their relative orientations by normal vectors n, where rotation
about n is not considered (see Figure S1).

Fig. S1. Schematic expressing the angular components of two interacting CG lipids, at positions {ri,r j},
and separation ri j. Each particle is axisymmetric with a unit vector {ni,n j} fixed to them, represent-
ing the axis of symmetry. The angular parameters {θi,θ j} are dependant on these normal vectors. The
orientation of each particle is indicated by the colour of their halves.

The Yuan potential is dependant on two functions, u(r) and φ(r̂i j,ni,n j), characterising the translational
and angular dependencies respectively. The function φ acts to weight the interaction strength between two
CG lipid particles according to their relative orientation, and is given by

φ(r̂i j,ni,n j) = 1+µY [a(r̂i j,ni,n j)−1] (S1)

a(r̂i j,ni,n j) = (ni× r̂i j) · (n j× r̂i j)+ sinθ0(ni−n j) · r̂i j− sin2
θ0, (S2)

where r̂i j = ri j/r, and θ0 and µY are parameters characteristic to the model. θ0 corresponds to the most
energetically favourable angular configuration of particles - that when θi = θ j = θ0 - thus links to the
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membranes spontaneous curvature c0, approximated by

c0 ∼
2
d0

sinθ0, (S3)

where d0 is the average interparticle separation. µY weights the energy penalty for deviation away from θ0,
thus relates to the membranes bending rigidity.

To provide the intermediate fluid phase necessary to produce the correct diffusion behaviour, a two
branch function is adopted [1]. The position function separates attractive and repulsive branches as

u(r) =

 uR(r) = ε

[( rmin
r
)4−2

( rmin
r
)2
]
, r < rmin

uA(r) =−ε cos2ζ

(
π

2
r−rmin
rc−rmin

)
, rmin < r < rc

(S4)

with energy unit ε = σε defining the energy well, and distance rmin being that which minimises the potential
energy. As in the 12-6 LJ, rmin =

6
√

2σ , in length unit σ = σr. The cutoff radius is given as rc = 2.6σ , to
include second neighbour interactions. The attractive branch smoothly decays to zero at rc, with exponent
ζ controlling the slope of the branch. The full anisotropic pair-potential is then given by

U =

 uR(r)+ ε [1−φ(r̂i j,ni,n j)] , r < rmin

uA(r)φ(r̂i j,ni,n j), rmin < r < rc

(S5)

2. UNITS

To convert each variable i from non-dimensional "model" LJ units (denoted iM) to "real" SI units (denoted
iR), dimensional conversion parameters σi are used. Each system quantity has conversion parameter defined
as such as follows:

• Length σr = 5nm: Defined by the lipid bilayer thickness, being the minimum length-scale required
in the system [2].

• Temperature σT = 1.3× 102K: Defined by T R = σT T M , assuming a room temperature system
T R = 293K, and with target model temperature T M = 0.23 following previous application of the
model [1, 3].

• Energy σε = 1.8×10−20J: From LJ relationship σε = σT kB, where kB is the Boltzmann constant.

• Pressure σP = 1.4×105N/m2: From LJ relationship σP = σε/σ3
r

• Force σF = 3.5pN: From LJ relationship σF = σε/σr.

• Time σt = 80ns: Evaluated from the mean-square-displacement of a simulated patch of isolated lipid
membrane, as described in the next section (A).

• Mass σm = 4.9×10−6kg: From LJ relationship σm = σε (σt/σr)
2.

A. Diffusivity and Timescale
At TM = 0, a RBC membrane forms a solid phase with a long-range order [4]. As temperature is then
increased this order is broken as fluctuations emerge, characterising a fluid phase. The presence of such a
fluid phase at TM = 0.23 can be verified in the Yuan model by showing that the mean-square-displacement
MSD increases linearly with time for a tensionless planar lipid membrane. The two-dimensional MSD is
calculated as [5]

MSD(t) =
1
N

N

∑
i=1

〈
(ri(t)− ri(0))

2
〉
, (S6)

where ri = (x,y) is the position of a particle at time t with-respect-to the centre of mass of the bilayer plane.
From Einstein’s equation for a two-dimensional membrane, the in-plane diffusivity is then given by

D = lim
t→∞

(
MSD(t)

4t

)
. (S7)

Simulations are performed on the two-dimensional plane of lipid bilayer, as described in section 3.2 of the
main paper. Figure S2 shows the MSD and diffusivity over time, with D = 6.7×10−3σ2

r /σt taken between
4×105 and 2×106 steps, when the membrane is deemed equilibrated. Comparing this against a typical
diffusion for an RBC bilayer D∼ 2×10−8cm2/s at 300K [6], the timescale is found to be σt = 80ns. This
is comparable to past implementation of the model, with Fu et al. determining σt = 100ns [3].
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Fig. S2. MSD (black) and two-dimensional diffusivity (red) against time for the lipid bilayer patch.
Membrane configurations are taken every 1000 steps, and discarded if the surface tension is calculated to
be greater than ±0.01σF/σr offset from zero.

3. BENCHMARK

To evaluate the feasibility of the model for whole-cell simulations at full physical size DM = DM
RBC = 1600

(DR = 8µm), timings are compared for varying particle numbers and type proportionalities. The base
system tested is that for the shape evolution over 290,000 steps, but excluding the compression phase for
consistency between cell sizes. To first determine the scalability of the model, whole-cell systems are
timed for varying cell size DM , thus total number of particles (see Figure S3A). The proportion of water-to-
membrane particles is kept consistent with DM , with a constant proportion of super-cell volume containing
membrane. Unfortunately, the LAMMPS deployed model is found to scale poorly with number of nodes.
Only at DM ≥ 150 does an increased number of nodes start to show any improvement. Continuation of the
exponential trend would expect simulation of a DM = 1600 cell to take around 2000 years to complete on 4
nodes.

To then compare the contributing load from the complex Yuan membrane mechanics against the sim-
ple LJ fluid, systems are tested with varying ratios of water-to-lipid particles (see Figure S3B). Linear
regression finds that the water particles account for only 9% of the total simulation time relative to the
membrane particles. This indicates an explicit solvent to only marginally constrain feasible simulation
scales. Furthermore, the implication is that it is then the implementation of the custom Yuan pair potential
function that is primarily responsible for the poor scalability of the model.

4. FLUCTUATION ANALYSIS

To analyse the rigidity in the whole cell, fluctuation analysis can be applied to a three-dimensional vesicle
by measuring the thermal undulations of the membrane over time. To achieve this, many sequential contours
of the membrane are taken - two-dimensional slices of the cell surface. The analysis technique is applied
here following the methodology developed successively by Faucon et al. [7], Mitov et al. [8], and Melerard
et al. [9].

The positional vector of a point on the membrane at time t is defined in spherical coordinates by
r(θ ,φ , t) = R0[1+u(θ ,φ , t)]er(θ ,φ), with unit normal vector er(θ ,φ). The displacement-field u(θ ,φ , t)
represents the local deviation from a perfectly spherical surface of radius R0; the amplitude of fluctuation in
the direction (θ ,φ). As an RBC is not spherical, R0 is chosen as the radius of a perfect sphere of equivalent
volume R0 = (3V0/4π)1/3. The vesicle shape u(θ ,φ , t) is decomposed into the sum of a static average
value u0(θ ,φ) and dynamic perturbation δu(θ ,φ , t), where 〈u(θ ,φ , t)〉= u0(θ ,φ) and 〈δu(θ ,φ , t)〉= 0.

The dynamic shape perturbations can be expressed in the spherical harmonics basis as

δu(θ ,φ , t) =
n=nmax

∑
n=0

m=n

∑
m=−n

Um
n (t)Y m

n (θ ,φ), (S8)

with spherical harmonics functions Y m
n (θ ,φ), and time-dependent membrane displacements Um

n (t). The
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Fig. S3. (A) Plot of simulation time against cell-size-associated volume when run on 1-4 28-core nodes.
(B) Plot of simulation time for systems comprised of varying proportions of water to membrane particles.
Standard error in plot B is obtained from repeating each simulation 3 times.

upper modes are capped at a value nmax =
√

N, being the root of the number of membrane lipids [? ]. We
only observe the equatorial cross-section of the vesicle (taking fixed polar angle θ = π/2), so can omit the
m order of decomposition.

Assuming that the fluctuations remain small (u(θ ,φ , t)� 1), the mean square amplitudes of membrane
fluctuations can be derived to be〈

|Um
n (t)|2

〉
=

kBT
B

1
(n−1)(n+2)[Σ̄+n(n+1)]

, n≥ 2, Σ̄≥−6 (S9)

with reduced membrane tension Σ̄ = σR2/B [? ]. The case n = 0 corresponds to variation in the mean
vesicle radius, and n = 1 to variation in the centre of mass. Neither of these are relevant for the fluctuation
analysis, so only modes n ≥ 2 are considered. Σ̄ is constrained above -6, so as to keep the denominator
of Eq. S9 from going negative. As Σ̄ measures the tension in the vesicle, it also dictates the maximum
amplitude of fluctuations, by being a measure of the excess area in the membrane. As Σ̄→∞ the membrane
is increasingly tightly spherical, with undulations becoming too small to measure. Conversely, as Σ̄→−6
the fluctuations are possibly very large, degrading the statistics of the low mode numbers.

To establish a connection between the experimentally observable two-dimensional contour slices and
three-dimensional model that lead to Eq. S9, the angular auto-correlation function (ACF) is introduced. For
a given contour, the angular ACF is given by

ξ (γ, t) =
1

2πR2
0

∫ 2π

φ=0
[ρ(φ + γ, t)−ρ(t)] [ρ∗(φ , t)−ρ(t)]dφ (S10)

with angle about the contour γ , radius at a point on the contour ρ(φ , t) = r(π/2,φ , t) and the φ -mean radius
of a single contour ρ(t) = 〈ρ(φ , t)〉 [9]. The temporal mean of the ACF can be expanded using Legendre
polynomials as [? ]

〈ξ (γ, t)〉= ξ (γ) =
nmax

∑
n=2
〈Bn(t)〉Pn(cosγ), (S11)

with coefficients 〈Bn(t)〉. These coefficients are defined as the time-average amplitudes of decomposition
of the ACF in the Legendre polynomial basis, and relate to

〈
|Um

n (t)|2
〉

by

〈Bn(t)〉=
2n+1

4π

〈
|Um

n (t)|2
〉
. (S12)

From the expression of the ACF as a Legendre polynomial series in Eq. S11, the coefficients Bn can be
calculated from the experimentally obtainable ACF data as [10]

Bn(t) =
(

2n+1
2

)∫
π

0
sin(γ)ξ (γ, t)Pn(cosγ)dγ. (S13)
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By calculating the coefficients Bn(t) averaged over many contour configurations, the constants B and Σ̄ can
be determined by a χ2 fit of 〈Bn(t)〉 against n through Eq. S12 and Eq. S9.

The procedure is thus employed in our simulations as follows:

1. Contours are taken in the (x,y) plane of the cell, being that around the circular outer ring of the
biconcave cell membrane. Each angular point ρ = (φ , t) of the contour is simply defined by the lipid
particle within that segment having the largest radius from the contour midpoint.

2. The angular ACF can then be approximated as

ξ ( j, t) =
1

2πR2
0

i=Nφ

∑
i=0

[ρ(i+ j, t)−ρ(t)] · [ρ(i, t)−ρ(t)]∆ j (S14)

for each angular step j of size ∆ j ≡ ∆i around the contour, in the range 0≤ j < Nφ/2.

3. Eq. S13 is converted into a sum over j as

Bn(t) =
2n+1

2

j=Nφ /2

∑
j=0

ξ ( j, t)sin( j)Pn(cos j)∆ j (S15)

with the mean 〈Bn(t)〉 then taken over many consecutive contour configurations.

4. The calculated mean coefficients are finally plotted against n, with a χ2 fit determining the two
constants B and Σ̄.

Resulting graphs for the fits of Eq. S12 to the mean-squared-coefficients are given in Figure S4 for those
cell sizes not shown in the main paper.
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Fig. S4. Graphs of the spectra of coefficients for each cell size not shown in the main paper. Coefficients
are taken from the mean result of 1000 contours from 6 different cells.
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