Electronic Supplementary Information

Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as

wearable strain sensors for expansion-contraction motion monitoring

Wenshuai Zhang, ‡ª Lingxiao Xu, ‡b Meijin Zhao, ª Yuning Ma, *, c Ting Zheng, *, d Lei Shi*, a

^a Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

^b Jinan Tonglu Pharmaceutical Technology and Development Co., LTD., Jinan 250101, China

^c Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and

Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China

^d Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

Fig. S1. ¹H NMR spectra of (a) Alg-PBA, and (b) Alg-DA in D_2O .

Fig. S2. (a) Photograph and (b) schematic of Alg-CNT hydrogel formation.

Fig. S3. (a) FT-IR spectra of Alg, Alg-CNT_{0.5}, Alg-CNT_{2.0}, and Alg-CNT_{5.0} hydrogels, and (b) their corresponding magnified images in the wavenumber range of 1000–2000.

Alg	Alg-CNT _{0.5}	Alg-CNT _{2.0}	Alg-CNT _{5.0}	Assignment
1033	1033	1033	1033	<i>v</i> _s (C–O–C)
1413	1413	1413	1413	v _s (COO ⁻)
1490	1494	1496	1496	Amide II
1612	1612	1612	1612	$v_{\rm as}$ (COO ⁻)
2921	2921	2921	2921	<i>v</i> _s (С–Н)
3425	3425	3425	3425	<i>v</i> _s (О–Н)

Table S1. The assignment of the characteristic vibrational bands of hydrogels.

Fig. S4. Storage modulus G' (black dotted line) and loss modulus G'' (red dotted line) of (a) Alg, (b) Alg- $CNT_{0.5}$, (c) Alg- $CNT_{1.0}$, (d) Alg- $CNT_{2.0}$, (e) Alg- $CNT_{3.0}$, and (f) Alg- $CNT_{5.0}$ hydrogels in oscillatory frequency sweep measurements.

Fig. S5. Storage modulus G' (black dotted line) and loss modulus G'' (red dotted line) of polymer mixtures containing Alg-PBA and Alg-DA (a) in aqueous solution without adding NaOH and (b) in a buffer solution (pH = 7.4) in oscillatory frequency sweep measurements.

Sample	Self-healing efficiency ^a [%]	Self-healing efficiency ^b [%]
First healing	99.2	99.1
Sencond healing	96.5	98.5
Third healing	95.4	_

Table S2. The calculated self-healing efficiency of Alg-CNT_{2.0} hydrogel.

a: calculated from the tensile tests by the retained tensile strength; b: calculated from the rheological tests by the retained tensile strength.

Ref.	Gels	Substrates	Adhesion strength (kPa)
4	PAA-PANI	glass	17.4
5	PDA-pGO-PAM	porcine skin	17.6
6	PC-CNF-GG	porcine skin	2.3
9	PVA-G-PDA-AgNPs	porcine skin	1.7
23	PVA/C-Chitosan	porcine skin	6.0
24	PDA@Ag NPs/CPHs	porcine skin	29
26	PAA-PEDOT:SL	porcine skin	4.6
32	DTPAM	porcine skin	15.2
33	PNIPAM/L/CNT	porcine skin	6.1
35	PVA-FSWCNT-PDA	porcine skin	5.2
50	MXene nanocomposite	porcine skin	7.4
51	DTG	porcine skin	9.8
This work	Alg-CNT	porcine skin	15.4

Table S3. The summarized adhesion strengths of recently reported hydrogel sensors.

Table S4. The caclulated absolute values of the resistances of Alg-CNT hydrogels.

Samples	Alg	Alg-CNT _{0.5}	Alg-CNT _{1.0}	Alg-CNT _{2.0}	Alg-CNT _{3.0}	Alg-CNT _{5.0}
R (Ω)	11396	8799	8474	7813	6791	5917

Fig. S6. The electrical conductivity of Alg-CNTx hydrogels doped with different contents of CNTs.

Fig. S7. Photographs showing the brightness change of the LED bulb in the circuit before and after the self-healing process of Alg-CNT_{2.0} hydrogel.

Fig. S8. (a, b) Relative resistance changes of the Alg- $CNT_{2.0}$ hydrogels by stretching to different strains, and (c, d) their corresponding relative resistance change as a function of strain.

Fig. S9. In vitro monitoring of the relative resistance change of (a) Alg hydrogel, (b) Alg-CNT_{0.5} hydrogel, (c) Alg-CNT_{1.0} hydrogel, (d) Alg-CNT_{2.0} hydrogel, (e) Alg-CNT_{3.0} hydrogel, and (f) Alg-CNT_{5.0} hydrogel adhered onto the surface of balloon under same expansion-contraction motion.

Fig. S10. The relative resistance change of Alg-CNT_{2.0} hydrogel adhered onto the surface of balloon under expansion-contraction motion, in which the response time was marked in red frame.

Ref.	GF value	Working range [%]	Cycles	Monitoring type
2	3.4	0-300	20	Joint flexion/speaking
4	18.28	0-269	1000	Touch keyboard/speaking
7	1.25	0-1000	300	Pressure/Joint flexion
9	0.13	0-331	50	Joint flexion/speaking
12	1.51	0-1000	1000	Human motion
17	3.44	0-363	50	Pressure/human motion
18	3.15	0-300	500	Human motion/Breathe
19	1.5-3.39	0-250	300	Human motion
20	0.8-1.6	0-50	2000	Pressure/human motion
25	0.26-0.58	0-550	2000	Human motion
37	2.71	0-70	100	Human motion
40	6.0	0-700	100	Joint flexion/speaking
41	1.41-1.48	0-2000	300	Human motion
43	0.4-2.9	10-4000	350	Joint flexion
44	2.5-6.6	0-400	1000	Human motion
53	0-3.12	0-95	360	Pressure/human motion
This work	0.38-0.60	0-500	30000	Breathe/Heartbeat

 Table S5. The summarized sensing performances of recently reported hydroge sensors.