Tuning the Through-Space Charge Transfer Emission in Triarylborane and Triarylamine Functionalized Dipeptide Organogels Supporting Information

Yu Wang, [†] Bowen Wang, [†] Kanglei Liu, [†] Xiaodong Yin, [†] Pangkuan Chen, [†] Nan Wang*[†]

[†]Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

Table of Contents

- S1. Gel and Photophysical Properties
- S2. NMR and HRMS Spectra

S1. Gelation Properties

Table S1. Results of the gelation studies with **B1** and **N1** in alphatic and aromatic solvents. ^a (All compounds were heated to completely dissolve and then cooled to room temperature.)

Solvent	Status	
	N1 (MGC) ^b	B1 (MGC) ^b
Benzene	G (20%)	S
Toluene	G (20%)	S
o-xylene	G (20%)	S
m-xylene	G (20%)	S
p-xylene	G (20%)	S
Mesitylene	G (20%)	S
Trichloromethane	G (20%)	S
Ether	G (20%)	Ι
acetone	G (20%)	S

^a G : gel; S : solution; I : insoluble; ^b MGC : minimum gelation concentration

Table S2. Results of the gelation studies with **B2** and **N2** in alphatic and aromatic solvents.^a (All compounds were heated to completely dissolve and then cooled to room temperature.

Solvent	Status	
	N2 (MGC) ^b	B2 (MGC) ^b
Trichloromethane	S	S
Ether	Ι	Ι
Acetone	S	S
Benzene	G (1.5 %)	S
Toluene	G (1.5 %)	S
o-xylene	G (1.5 %)	G (1.5 %)
m-xylene	G (1.0 %)	G (2.0 %)
p-xylene	G (1.0 %)	G (1.0 %)
Mesitylene	G (1.0 %)	G (0.5 %)

^a G : gel; S : solution; I : insoluble; ^b MGC : minimum gelation concentration

Figure S1. SEM images of the single gels in mesitylene (wt.% = 2%): (A) **BN**, (B) **B2** and (C) **N2**.

Figure S2. Emission (left) and Absorption (right) spectral change of N2 with the addition of B2 in mesitylene $(1.0 \times 10^{-5} \text{ M})$.

Figure S3. Sol-gel transition temperature (T_{gel}) of binary gels with different **B2** to **N2** ratios in mesitylene (wt.% = 2%) (Single component **B2**_(gel), **N2**_(gel) and **BN**_(gel) are included as controls).

Figure S4. XRD patterns of xerogels in the region of 1-55°.

Figure S5. Emission spectra of **BN** in mesitylene at different concentrations (pink: gel state; red: $C = 10^{-5}$ M; blue: $c = 10^{-3}$ M).

Figure S7. 13 C NMR (101 MHz, CD₂Cl₂) spectrum of **1-2**.

Figure S8. HRMS spectrum for 1-2.

Figure S9. ¹H NMR (400 MHz, DMSO) spectrum of C6B.

Figure S10. HRMS spectrum for C6B.

Figure S11. ¹H NMR (400 MHz, DMSO) spectrum of **2-2**.

Figure S12. ¹³C NMR (101 MHz, DMSO) spectrum of **2-2**.

Figure S13. HRMS spectrum for 2-2.

Figure S15. ¹³C NMR (101 MHz, DMSO) spectrum of B1.

Figure S16. HRMS spectrum for B1.

Figure S17. ¹H NMR (400 MHz, DMSO) spectrum of **B2**.

Figure S18. ¹³C NMR (101 MHz, DMSO) spectrum of **B2**.

Figure S19. HRMS spectrum of **B2**.

Figure S21. ¹³C NMR (101 MHz, DMSO) spectrum of N1.

Figure S22. HRMS spectrum of N1.

Figure S23. ¹H NMR (400 MHz, DMSO) spectrum of N2

Figure S24. ¹³C NMR (101 MHz, DMSO) spectrum of N2.

Figure S25. HRMS spectrum of N2.

Figure S27. ¹³C NMR (101 MHz, DMSO) spectrum of **BN**.

Figure S28. HRMS spectrum for **BN**.