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S I Materials
To understand how the monoanionic and dianonic species of SDP
are distributed as a function of pH, the titration curve was deter-
mined, fig. S1. The curve shows two different regions: the first
one in a pH range of 6-8 and a second in a range of 11-12. Ac-
cording with Nakayama et al. 1 at higher pH values the surfactant
head groups are completely ionized (SDP2-), while in solutions
closed to neutrality mono charged species are present (SDP-).
The charge of the head gropup, which depends on the pH, dic-
tates the aggregation behaviour of the pure surfactant solution.
Large size aggregates are formed by protonated SDP molecules,
while smaller size is constructed in alkaline solution due to the
electrostatic head group repulsion which are bearing two nega-
tive charges1,2.

To switch the pH back and forth for fig. 2, both NaOH (10 M
solution) and HCl (1 M solution) were added from an Eppendorf
pipette under vigorous stirring of the PESC solution. As the PESCs
are shear thinning, the solution to which the NaOH is added is
rather liquid so that mixing is not a problem even though the solu-
tion is quite viscous at rest. In the last step, the solution is diluted
by about 10 % which ensures that the solution is still above the
overlap concentration of JR 400 of about 0.8 wt% and it should
also be noted that even at a PE concentration of 0.5 wt% a signif-
icant increase in viscosity could still be observed for JR 400 and
sodium dodecylbenzenesulphonate3

S II Rheology

a Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam,
Germany
b Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-
38042 Grenoble Cedex 9, France; E-mail: hoffmann@ill.fr
c Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, D-14109, Berlin, Germany
d Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-
64289 Darmstadt, Germany; E-mail: emanuel.schneck@pkm.tu-darmstadt.de

Fig. S1 Titration curve for SDP, 20 mM, at room temperature, in water
as function of added volume of NaOH 0.1 M.

According to Green and Tobolsky4,5, the plateau value of G
′
,

termed G0, is related to the network junction density via:

G0 = gεkBT (S1)

with the network junction density ε, the absolute temperature T ,
Boltzmann’s constant kB and a factor g to account for the strength
of the junctions in units of kBT , which is initially set to 1 for the
calculation of the values in table S I.

S III SANS
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Fig. S2 Zero shear viscosity of JR 400/SDP- mixtures as function of Z
(bottom) and surfactant concentration (top).

Fig. S3 Viscosity as a function of γ̇ crit of JR 400 with SDP2− (closed
symbols) and with SDP− (open symbols) at different Z values

Fig. S4 Elastic modulus G’ and viscous modulus G” as a function of
angular frequency for JR 400/SDP- mixtures.

Fig. S5 Structural relaxation time τcross of JR 400/SDP- as a function
of Z (bottom) and surfactant concentration (top).

Table S I Parameters obtained from Oscillatory Shear Rheology of
JR 400/SDP- mixtures.

Z ωcross τcross G0 ε ξ

/ [rad/s] [s] [Pa] [m−3] [nm]
7 45 0.14 22 5.49 x 1021 57
5 36 0.17 56 1.35 x 1022 42
3 7.2 0.87 60 1.47 x 1022 40
2 1.39 4.52 77 1.87 x 1022 38
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The SANS signal of an ensemble of monodisperse, non-
interacting particles is generally given as:

I(Q) = 1NP(Q)+ Ibkg (S2)

where 1N is the particle number density, P(Q) the particle form
factor, and Ibkg the Q-independent, incoherent background which
is subtracted in the curves shown in this manuscript. The form
factor is defined such that P(Q = 0) = V 2

p (∆ρ)2, where Vp is the
volume of a particle and ∆ρ = ρp−ρm is the scattering length den-
sity difference between a particle and the surrounding medium.
1N is coupled to the volume fraction φ and the particle volume Vp

by 1N = φ/Vp.

The form factor of randomly oriented cylinders with radius R
and length L is given by

Pcyl(Q) =
∫ 1

0
Fcyl(Q,x)2dx, (S3)

where the integral over x takes into account the orientational av-
erage and Fcyl(Q,x) is the scattering amplitude

Fcyl(Q,x) = πR2L∆ρ
4J1(q,R

√
1− x2)sin(qLx/2)

q2R
√

1− x2Lx
(S4)

comprising the first order Bessel function J1.

If the sample is polydisperse with regard to the radius, eq. (S2)
takes the form

I(Q) = 1N
∫

∞

0
f (R)P(Q,R)dR+ Ibkg (S5)

where f (R) is the radius distribution and 1N takes the form

1N =
φ∫

∞

0 f (R)Vp(R)dR
. (S6)

Here, we used the normalised lognormal distribution function

f (R,Rm,σ) =
1√

2πσR
exp
(
− ln(R/Rm)2

2σ2

)
(S7)

M = Rm exp
(

1
2σ2

)
(S8)

where M is the mean value of the distribution and the standard
deviation is given by

√
exp(σ2)−1Rmexp(1/2σ2), fixed at 10%.

The curve of pure PE can be described by the equation:

IPE(Q) = 1NPE

∫
f (R,RPE)Pcyl(Q,R,∆ρPE,LPE)dR, (S9)

with the scattering length density difference ∆ρPE between PE and
D2O and the particle number density of free PE segments

1NPE =
φPE∫

f (R,RPE,σ)V (R,L)dR
. (S10)

The SANS curves of PE/SDP2-, see fig. S7, can be described
with the same model used for the pure PE, only adapting the
volume fraction and the scattering length density, so that

φPE/SDP2- = φPE + ySDP2- φSDP2- (S11)

10-4

10-3

10-2

10-1

 IQ
 [1

/(c
m

 n
m

)]

4 5 6
0.1

2 3 4 5 6
1

2 3 4 5

 Q [1/nm]

  JR 400 
 Z 2
 Z 5
 Z 7
 Z 10

Fig. S6 Comparison of the SANS curves of 1 wt% JR 400 with SDP– at
different Z values and pure JR 400. Raising the surfactant concentration
(i.e., reducing Z), an increase of the scattering intensity without a change
of the shape of the curve is observed at high Q, because of the formation
of mixed aggregates. Top: As Intensity vs Q plot; bottom: as Holtzer
plot

Fig. S7 SANS curves of JR 400/SDP2- 1 wt % at different charge ratios.
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Fig. S8 Fraction of PE in the aggregates xPE , left axis. Average number
of PE chains per aggregate, right axis. Both as a function of charges
ratio (bottom) and SDP- concentration (top).

and

ρPE/SDP2- =
φPE

φPE/SDP2-
ρPE +

ySDP2- φSDP2-

φPE/SDP2-
ρSDP2- (S12)

To describe the PE/SDP- mixed aggregates (see fig. 4), it has
been used the fallow equation6,7:

Iagg(Q) = 1Nagg

∫
f (R,Ragg,σ)Pcyl(Q,R,∆ρagg,Lagg)dR

+ erf
((

QRagg/
√

12
)2
)

φPExPE∫
f (R,RPE,σ)Vp(R,LPE)dR

×
∫

f (R,RPE,σ)Pcyl(Q,R,ρPE−ρsurf,LPE)dR (S13)

with the scattering length density of the aggregates ρagg given
by:

ρagg =
φsurf
φagg

ρsurf +
φPExPE

φagg
ρPE. (S14)

Assuming the aggregates homogeneous along their length it is
possible to calculate the number of PE chains per aggregate via:

NPE chains =
xPEφPE

φagg

R2
agg

R2
PE

. (S15)

where R2
agg is the radius of the mixed aggregates and R2

PE is the
radius of an individual PE chain.

The attentive reader may have noticed that the error bars at low
Q are rather large for samples with low intensity, especially for
the pure JR 400 (see for example figs. S6 and S7). Since only the
long wavelength edge of the wavelength band and comparably
few pixels close to the beam stop of the detector contribute to
the lowest Q points, which reduces the effective incoming flux for
these Q values. If these effect are not counter balanced by a strong
increase in scattering intensity towards low Q (as for example in
the other curves in fig. S6) this results in comparably large error
bars at low Q and measuring sufficiently long to have error bars

comparable to the other curves with higher intensities at low Q
quickly becomes unfeasible.

S IV Neutron Spin-Echo Spectroscopy

NSE directly yields the normalised intermediate scattering func-
tion S(q, t), which can usually be approximated with a simple ex-
ponential

S(Q, t) = exp(−Dapp(Q)Q2t) (S16)

where Dapp is the Q dependent apparent diffusion coefficient,
which is related to the apparent hydrodynamic radius

Rh(Q) =
kBT

6πηDapp(Q)
(S17)

where kB is the Boltzmann constant, T is temperature and η is the
viscosity of the solvent. For non-interacting, spherical particles,
Rh coincides with the geometrical radiu.

The diffusion of rodlike particles with radius R and length L can
be described using the Broersma equation8. The translational
(Drod) and the rotational (Θrod) diffusion coefficients are given
by:

Drod =

(
kBT

3πηsolvL

)
(δ −0.5

[
γ‖(δ )+ γ⊥(δ )

]
) (S18)

Θrod =

(
3kBT

πηsolvL3

)
(δ −ζ (δ )), (S19)

where δ = ln(L/R), γ‖ = 1.27 − 7.4(1/δ − 0.34)2, γ⊥ = 0.19 −
4.2(1/δ − 0.39)2 and ζ = 1.45− 7.2(1/δ − 0.27)2. The resulting
intermediate scattering has a double exponential decay:

Srod(Q, t) = s0(Q)exp(−DrodQ2t)+ s1(Q)exp(−(DrodQ2 +6Θrod)t)
(S20)

with the amplitudes

s0(Q) =

(
2

QL

∫ QL
2

0
j0(z)dz

)2

s1(Q) = 5

(
1

QL

(
−3 j1

(
QL
2

)
+
∫ QL

2

0
j0(z)dz

))2

(S21)

where jn is the nth order spherical Bessel function.

At intermediate length scales, the behaviour of a polymer in so-
lution is governed by hydrodynamic interactions. Dapp depends
linearly on Q and the slope a is related to the solvent viscosity9–11

so that Dapp(Q) = D0 +aQ. Dubois-Violette and De Gennes 11 de-
rived an expression for the intermediate scattering function of
an infinitely long polymer in solution based on a Rouse-Zimm
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chain12:

SZimm(Q, t) = (ΓZimmt)2/3
∫

∞

0
exp
(
−(ΓZimmt)2/3u [1+h(u)]

)
du

(S22)

SZimm(Q,0) = 1

h(u) =
4
π

∫
∞

0

cos(y2)

y3

[
1− exp(−y3u−3/2)

]
dy

(S23)

where

ΓZimm =

√
3Q3kBT

63/2ηsolv
, (S24)

and the solvent viscosity ηsolv is the only property of the sam-
ple entering in eq. (S22). To account for translational diffusion,
eq. (S22) is modified as follows:

Sdiff
Zimm(Q, t) = exp(−D0Q2t) [(1−A(Q))+A(Q)SZimm(Q, t)] ,

(S25)
where A(Q) is the amplitude of the internal motions of the poly-
mer and D0 accounts for the translational diffusion of the poly-
mer.

The intermediate scattering functions of samples with single-
charged surfactant can be described as superposition of Srod
(eq. (S20)) and Sdiff

Zimm (eq. (S25)) where the ratio between the
two contributions is fixed through xPE which is known from the
SANS fits. In addition, at long Fourier times, an elastic compo-
nent becomes visible, which is accounted for by a constant term
Sel:

S(Q, t) =
1

S(Q,0)

(
φsurf + xPEφPE

Vagg
Pagg ·Srod(Q, t)

+
(1− xPE)φPE

VPE
PPE ·Sdiff

Zimm(Q, t)
)
+Sel(Q). (S26)

In these fits, the only free parameters are the (Q-independent)
length of the rods in Srod(Q, t) and Sel(Q). All other parameters
are either known from SANS or fits to the NSE data of the pure
JR 400 solution.

Fig. S9 NSE intermediate scattering functions of PESCs with 1 wt%
JR 400 and 5 mM SDP– (Z = 2), fits according to eq. (S26).

Fig. S10 NSE intermediate scattering functions of PESCs with 1 wt%
JR 400 and 2 mM SDP– (Z = 5), fits according to eq. (S26).

Fig. S11 NSE intermediate scattering functions of PESCs with 1 wt%
JR 400 and 1.4 mM SDP– (Z = 7), fits according to eq. (S26).
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Fig. S12 Length of the mixed rodlike PE/surfactant aggregates for
samples with 1 wt% JR 400 and SDP– . The aggregates become slightly
shorter as more surfactant is added.
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