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Table S1: Formulations studied in this work
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Figure S1: Chemical reaction between epoxy and amine precursors (a) primary amine reaction (b) secondary
amine reaction. (c) etherification



Figure S2: Partial atomic charges that were reassigned when a secondary amine was formed.

Figure S3: Partial atomic charges that were reassigned when a tertiary amine was formed.
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Figure S4: Average density as a function of temperature. Uncertainties are smaller than the symbols
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Figure S5: Volume as a function temperature for the systems studied. The black lines represent the linear
fit to the rubbery and glassy regime.



S1 Estimation of T}

Let (Ty, pgr) and (Tr, py) represent a point in the glassy regime and rubbery regime respectively (see Fig.
S6). The equation of a line segment in the glassy regime can then be written as

pgr = Pgi + gt (T — Tg1) (1)
and similarly a line segment in the rubbery regime can be written as

pr = pr + b (T} — TT) (2)

where (T4, pgi) and (T}, pr) are the centroids of the glassy line segment and the rubbery line segment
respectively .

The abscissa of the point of intersection of the two segments given by Eq. 1 and Eq. 2 is then taken to be
the T, and is given by

T — Pgl — Pr + bngTgl - Z;TTT' o Aa

9 byt — br Y )

The four parameters used in the two line segments (Eq. 1 and Eq. 2), ggi, g1, bgi, by are then computed
using the equations derived from weighted least squares (WLS) procedure. For brevity, the subscripts r and
gl that distinguish the parameters of the rubbery and glassy line segments respectively are dropped in the
following equations but is understood to apply to all quantities evaluated.

b % (4)

Spr = Z wi(T —T)(p— p) (5)
Srr =Y wi(T—T)>? (6)

5= Zz Wi Py
> Wi

1
= Var(or) ®)
T ZwaT (9)
1
Var(b) = Sor (10)
Var(s) = = (11)

B Do Wi

The sums were taken over the number of data points in the glassy or rubbery regime, as appropriate. The
Var(p) is the square of the standard deviation of the average density of five independent samples.



Estimating uncertainty (standard deviation) in glasstransition temperature St, amounts to estimating the
uncertainty in the intersection region of the two linear segments. A procedure that is frequently used in the
field of titrimetry was used for this purpose [4]. The assumptions involved in this procedure are discussed
in detail in literature [5, 4]. The uncertainty in T, is calculated as,

St, =/ Var(Ty) (12)

and Var(Ty) is given by,

Var(Ty) = [Var(pg) + Var(p:) + Y _(T? = 21T, + T;)Var(b;)]/Ab? (13)

where > j implies a sum of two terms, one with subscript j=r and one with j=gl.

——— Glassy fit —— Rubbery fit

Figure S6: Illustration of T} estimation procedure. (T, pg:) and (7T}, p,.) are the centroids of the glassy line
segment (red) and the rubbery line segment (blue) respectively. T is the temperature, p is the density and
T, is the glass transition temperature.
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Figure S7: C-N bonds created at each cure iteration in R=0.4 samples
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Figure S8: C-N bonds created at each cure iteration in R=0.67 samples
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Figure S9: C-N bonds created at each cure iteration in R=1 samples
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Figure S10: C-N bonds created at each cure iteration in R=2 samples
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Figure S11: C-N bonds created at each cure iteration in R=3 samples
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Figure S12: Concentration profiles of functional groups during cure in R=0.4 samples. The green line
represents the first order kinetic fit to secondary amine evolution.
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Figure S13: Concentration profiles of functional groups during cure in R=0.67 samples. The green line
represents the first order kinetic fit to secondary amine evolution.
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Figure S14: Concentration profiles of functional groups during cure in R=1 samples. The green line represents
the first order kinetic fit to secondary amine evolution.
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Figure S15: Concentration profiles of functional groups during cure in R=2 samples. The green line represents
the first order kinetic fit to secondary amine evolution.
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the first order kinetic fit to secondary amine evolution.
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Figure S17: Sum of the squared errors as a function of ky/k; for the systems studied
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System | Glassy range | Rubbery range
R=04 | 270 K-330 K | 495 K- 555 K
R=0.67 | 2710 K- 330 K | 495 K - 555 K
R=1 330 K -390 K | 540 K - 600 K
R=2 285 K- 345 K | 510 K- 570 K
R=3 270 K- 330 K | 465 K - 525 K

Table S2: Temperature ranges used for the estimation of T, and CVTEs

System | # of atoms before x | # of atoms after x | Box edge length (A) at 210 K
R=0.4 33048 32184 67.361
R=0.67 32000 30720 66.34

R=1 31752 30024 65.87

R=2 32242 30870 65.91

R=3 32060 30940 65.56

Table S3: Simulation box specifications: x stands for crosslinking. The simulation box is cubic. Uncertainties
in box lengths are negligible.

Sample | By | E1 | Ey | Ap

1 81 | 270 | 189 | 108
93 | 246 | 201 | 108
90 | 252 | 198 | 108
96 | 240 | 204 | 108
92 | 248 | 200 | 108

QY | W DN

Table S4: Monomer types in R=0.4 system.

Sample EO E1 E2 AO

1 229 | 182 | 69 | 160
221 | 198 | 61 | 160
226 | 188 | 66 | 160
224 | 192 | 64 | 160
224 1 192 | 64 | 160

[SAINTEN OV B )

Table S5: Monomer types in R=0.67 system.

Sample EO AU Al AQ Agl Ag A4

1 343 | 40 | 76 | 60 | 44 | 90 | 33
343 | 33 | 92 | 55 | 48 | 72 | 43
343 | 50 | 75 | 40 | 49 | 83 | 46
343 | 50 | 70 | 43 | 53 | 84 | 43
343 | 40 | 73 | 63 | 49 | 83 | 35

[SAISN NGV N )

Table S6: Monomer types in R=2 system.
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Sample E() A() A1 AQ AQ’ Ag A4
1 280 | 9 | 44 | 65 | 45 | 172 | 85
2 280 | 8 | 45 | 83 | 42 | 143 | 99
3 280 | 8 | 44| 60 | 51 | 174 | 83
4 280 | 8 |42 | 76 | 50 | 150 | 94
5 280 | 8 | 46 | 66 | 58 | 142 | 100

Table S7: Monomer types in R=3 system.

1.20
a3
1.18
—_ o
™
SE 116 .
L
e
~ 114+ °
o
1]
112+ ©
1.10 L y
0 20 40 60 80

Amine composition (pph)

Figure S18: Experimental data on psgp (room temperature density) as a function of amine composition
(reprinted here with permission from reference [1], copyright 1999 John Wiley & Sons.).

R | Amine composition (pph) | T, (°C) | psoo (g/cm?)
0.51 14.3 65 1.183
0.70 19.8 88 1.171

1 284 161 1.157
1.44 40.6 120 1.140
1.79 50.2 106 1.133
2.16 60.6 91 1.129
2.50 40.3 78 1.121

Table S8: Experimental data on room temperature density psgp and glass transition temperature T,. The
values of T, were taken from reference [1]. The density data were extracted from Fig. S18 using a graphical
extraction tool [3]. The amine composition in pph was converted to an equivalent amine-to-epoxy ratio R
using the relation, r = 2]%“9 f’v—‘:, where Mg and My are the molecular weight of epoxy (375 g/mol) and amine
respectively and ¢ is the amine-to-epoxy weight ratio (pph amine)
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Figure S19: Experimental data on linear thermal expansion coeflicient in the rubbery state a,; as a function
of amine composition (reprinted here with permission from reference [2], copyright 1992 John Wiley & Sons).

R | Amine composition (pph) | a,; pm/m/°C
0.5 14 172
0.64 18 165.11
0.76 21.34 160

1 28.09 152.06
1.26 35.43 158
1.66 46.64 161

Table S9: Experimental values of «,;. The data were extracted from Fig. S22 using a graphical extraction
tool [3].

S2 Regression models used for estimating missing properties from
experimental data

The polynomial model that best fits psoo vs. R data (Table. S8) is given by,
p300(R) = azR® + aaR* + a1 R + ay (14)
where a3=-0.0073, a2=0.0462, a;=-0.1130 and ay=1.23.
The polynomial model that best fits Ty vs. R data (Table. S8) is given by,
T,(R) = c3R® + caR* + c1 R+ ¢ (15)

where c3=0, c2=249.5525, ¢;=-180.9058 and ¢;=92.3534 for R <1 and c3=-30.3666, co=183.1428 and c¢;=-
400.3315 and ¢p=408.3625 for R >1

The polynomial model that best fits o,y vs. R data (Table. S9) is given by,

Oérl(R) =bR+ by (16)

where b1=-39.92 and by=191.19 for R <1 and b;=-39.92 and by=191.19 for R >1
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R p3o0(g/cm?) 7,(°C) an (pm/m/°C)
Sim. Exp. Sim. Exp. Sim. Exp.
0.4 | 1.1062+0.0018 | 1.19 | 120.59+0.0036 60 220.67+4.24 | 175.2
0.67 | 1.105040.0014 | 1.17 144+0.0046 83.17 | 173.63£7.17 | 164.44
1 1.1040£0.0065 | 1.15 | 189.714+0.0261 | 161 90+£21 152.06
2 1.0784+0.0011 | 1.13 | 161.64£0.0035 | 97.34 177+6.14 166.19
3 1.0640£0.0025 | 1.10 | 137.704£0.0067 | 35.75 | 189.74£15.13 | 179.53

Table S10: Comparison of material properties determined from MD simulations (Sim.) and experimental
data (Exp.) from literature. The experimental values of material properties of off-stoichiometric systems

(R #1) were obtained (estimated) using regression models.

Table S11: The adjusted values of T, based on shift estimated using WLF equation, T;V LF and heuristic
approach, Tfe“”sm and the estimated experimental values of T, calculated from regression model, T;*P*

’ System ‘ T;IP*(Uc) ‘ T;/VLF(OC) ‘ T;euristic(OC) ‘

R=04 60 33 66-88

R=0.67 83.17 56 89-11
R=1 161 102 135-157
R=2 97.34 74 107-129
R=3 35.75 50 83-105

(same as in Table. S10, listed here for ease of comparison)

Table S12: Volume fraction of defects, ¢p.r at 300 K, weight fraction of defects, wp.s and weight fraction

of sols, wse;.

Wpef

Wsol

$pes at 300 K

0.4

0.7420+£0.0094

0.3274+£0.0094

0.7450+£0.0088

0.67

0.44174+0.0051

0.112240.0051

0.4459+0.0048

0

0

0

0.332140.0081

0.044240.0063

0.36904-0.0083

0.4688+0.0005

0.1050+£0.0089

0.5147+0.0007
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Figure S20: Fractional free volume as a function of temperature for the systems studied.
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008 Cross over region
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Figure S21: Average fractional free volume as a function of temperature for the systems studied. The
temperature range over which crossover in the trend i.e., increase in fractional volume to decrease in fractional
volume, for deviations from R=1, occurs is shown.
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Figure S22: Experimental data on linear thermal expansion coefficient in the rubbery state o, as a function
of amine composition (reprinted here with permission from reference [2], copyright 1992 John Wiley & Sons).

S3 Data availability

The LAMMPS data files of the systems and description on how to visualize the monomer types and crosslinks
(C-N bonds) can be found in a zipped folder which can downloaded via the link provided below. The folder
also contains mol2 files of epoxy and amine which contain the partial charges. More data can be provided
on reasonable request.
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https://www.dropbox.com/s/aeeijqgcw3tdf8d/SI_DGEBAPACM.zip?d1=0

References

[1] M. R. Vanlandingham, R. F. Eduljee, and J. W. Gillespie Jr. Relationships between stoichiometry,
microstructure, and properties for amine-cured epoxies. Journal of Applied Polymer Science, 71(5):699—
712, 1999.

[2] G. R. Palmese and R. L. McCullough. Effect of epoxy—amine stoichiometry on cured resin material
properties. Journal of Applied Polymer Science, 46(10):1863-1873, 1992.

[3] Ankit Rohatgi. Webplotdigitizer: Version 4.2, 2019.

[4] Lowell M. Schwartz and Robert I. Gelb. Statistical uncertainties of end points at intersecting straight
lines. Anal. Chem., 56(8):1487-1492, 1984.

[5] Julia Martin, Gabriel Delgado Martin, and Agustin G. Asuero. Intersecting straight lines: Titrimetric
applications. In Vu Dang Hoang, editor, Advances in Titration Techniques, chapter 3. IntechOpen, Rijeka,
2017.

23



	Estimation of Tg
	Regression models used for estimating missing properties from experimental data
	Data availability

