Supporting Information

Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient overall water and urea splitting

Figure S1. XPS survey spectrum of the as-prepared Ni_xFeN/Ni₃N hybrid on Ni foam.

Figure S2. (a) The polarization curves for OER in 1M KOH and (b) cyclic voltammetry curves of the Ni_x FeN/ Ni_3N catalysts for UOR in 1M KOH + 0.5M urea.

Figure S3. Tafel plots for the OER and UOR derived from corresponding polarization

curve.

Figure S4. A steady-state potential polarization curve recorded on a piece of Ni foam in 1M KOH with 0.5M urea.

Figure S5. The polarization curves of the Ni_3N-1 and Ni_3N-2 catalysts for the OER in 1M KOH (a) and UOR in 1M KOH + 0.5M urea (b).

Figure S6. The comparison on the polarization curves of the Ni_xFeN/Ni_3N hybrid electrocatalyst using one- and two-step nitridation. (a) OER in 1M KOH. (b) UOR in 1M KOH containing 0.5M urea.

Figure S7. (a) The HER polarization curves of Ni_xFeN/Ni_3N in 1M KOH. (b) Chronopotentiometry test at a current density of 50 mA/cm² for Ni_xFeN/Ni_3N in alkaline medium.

Figure S8. The optimization of the catalytic properties by tuning the growth conditions. (a) OER and (b) UOR properties of the Ni_xFeN/Ni_3N samples with different concentrations of $Fe(NO_3)_3$ precursor in 5 mL ethanol solution. Temperature: 400 °C. (c) OER and (d) UOR properties of the Ni_xFeN/Ni_3N hybrids with different nitridation temperature. Precursor concentration: 0.1 g/ml.

Figure S9. Double-layer capacitance measurements of the Ni_xFeN/Ni₃N hybrid, Ni₃N-1 and pure Ni₃N-2 electrodes in 1M KOH. (a-c) Typical cyclic voltammetry curves at the scan rates from 20 mV/s to 200 mV/s. (d-f) Capacitive ΔJ (= $J_a - J_c$) versus the scan rates.

Figure S10. Double-layer capacitance measurements of the Ni_xFeN/Ni_3N hybrid, Ni_3N-1 and pure Ni_3N-2 electrodes in 1M KOH with 0.5 M urea. (a) Typical cyclic voltammetry curves at the scan rates from 10 mV s⁻¹ to 55 mV s⁻¹. (b,c) Typical cyclic

voltammetry curves at the scan rates from 20 mV s⁻¹ to 200 mV s⁻¹. (d-f) Capacitive $\Delta J (= J_a - J_c)$ versus the scan rates.

Figure S11. The normalized polarization curves of the Ni_xFeN/Ni₃N and pure Ni₃N-2 electrodes by C_{dl} difference in 1M KOH with and without 0.5M urea.

Figure S12. Nyquist plots of Ni_x FeN/ Ni_3N , Ni_3N -1 and pure Ni_3N -2 in 1M KOH (a)

and 1 M KOH containing 0.5 M urea (b).

Figure S13. The EDX spectra of the Ni_xFeN/Ni_3N hybrid catalyst before (a) and after UOR testing (b).

Figure S14. Hydrogen-evolving activity of the NiMoO₄-H₂ electrocatalyst in base.

Fig. S15. A typical CV curve of urea electrolysis at a scan rate of 1 mV s⁻¹.

Table S1. Comparison of the OER activity of the Ni_xFeN/Ni₃N hybrid with other

Electrocatalyst	OER overpotential @10 mA/cm ²	OER overpotential @100 mA/cm ²	Tafel slope	Ref
Ni _x FeN/Ni ₃ N	$\sim 211 \text{ mV}$	258 mV	43 mV/dec	This work
NiCoFeP/C	270 mV	335 mV	65 mV/dec	<i>Chem. Commun.</i> 55 , 10896-10899 (2019)
N-Ni ₃ S ₂ /NF	260 mV	330 mV	70 mV/dec	<i>Adv. Mater.</i> 29 , 1701584 (2017)
Co ₂ P/C	310 mV	375 mV	50 mV/dec	ACS Energy Lett. 1, 169-174 (2016)
Ni _{1.5} Fe _{0.5} P/CF	264 mV	293 mV	55 mV/dec	Nano Energy 34 , 472-480 (2017)
NiFe LDH/Cu nanowire arrays	199 mV	281 mV	28 mV/dec	Energy Environ. Sci. 10, 1820-1827 (2017)
Co-P	345 mV	392 mV	47 mV/dec	Angew. Chem. Int. Ed. 127 , 6349-6352 (2015)
$Ni_{0.7}Fe_{0.3}S_2$	198 mV	287 mV	56 mV/dec	J. Mater. Chem. A 5, 15838-15844 (2017)
Ni _x Fe _{1-x} Se ₂ -DO	195 mV	226 mV*	28 mV/dec	Nat. Commun. 7, 12324 (2016)
Gelled FeCoW/Au	191 mV	265 mV*	NA	Science

available	e electrocata	lysts reported	l presently.
-----------	---------------	----------------	--------------

foam				352 , 333-337 (2016)
NiSe ₂ -Ni ₂ P/NF	249 mV	274 mV	45 mV/dec	J. Catal. 377, 600-608 (2019)
$Co_{0.9}S_{0.58}P_{0.42}$	266 mV	~ 350 mV	48 mV/dec	ACS Nano 11, 11031-11040 (2017)
NiCoP/CC	242 mV	330 mV	64 mV/dec	ACS Catal. 7, 4131-4137 (2017)
O-CoMoS	272 mV	310 mV	71 mV/dec	ACS Catal 8, 4612-4621 (2018)
Ni-Co-P HNBs	270 mV	346 mV	76 mV/dec	Energy Environ. Sci. 11, 872 (2018)
FeP/Ni ₂ P	154 mV	224 mV	23 mV/dec	Nat. Commun. 9, 1551 (2018)

Table S2.	Comparison	of the	UOR	activity	of Ni	_x FeN/Ni ₃ N	with	other	reported

Electrocatalyst	UOR 50 mA/cm ² (V vs RHE)	UOR 200 mA/cm ² (V vs RHE)	Urea	Ref
Ni _x FeN/Ni ₃ N	1.347 V	1.358 V	0.5 M	This work
NF/NiMoO-Ar	1.398 V	1.475 V	0.5 M	Energy Environ. Sci. 11, 1890 (2018)
Ni-Mo nanotube	1.39 V	~ 1.49 V	0.1 M	Nano Energy 60 , 894-902 (2019)
NiClO-D	1.385 V	1.534 V	0.33 M	Angew. Chem. Int. Ed. 58 , 16820-16825 (2019)
Ni ₂ P NF/CC	1.447 V	1.642 V	0.5 M	J. Mater. Chem. A 5, 3208-3213 (2017)
$Ni_{0.9}Fe_{0.1}O_x$	1.386 V	1.429 V	0.33 M	<i>Chem. Commun.</i> 55 , 6555-6558 (2019)
Ni(OH) ₂ nanoflakes	1.48 V	1.72 V	0.33 M	Appl. Catal. B: Environ. 259, 118020 (2019)
NiCoP/CC	1.455 V	~ 1.70 V	0.5 M	J. Mater. Chem. A 7, 9078-9085 (2019)
S-MnO ₂ -G-NF	1.414 V	1.564 V	0.5 M	Angew. Chem. Int. Ed. 55 , 3804-3808 (2016)
r-NiMoO ₄ /NF	1.405 V	1.577 V	0.5 M	ACS Catal. 8, 1-7 (2018)

electrocatalysts in 1M KOH.

Ni ₃ N/NF	1.37 V	1.473 V	0.5 M	ACS Appl. Mater. Interfaces. 11, 13168-
				13175 (2019)

Table S3. Comparison of the oveall water and urea electrolysis performance of our paired electrodes $Ni_xFeN/Ni_3N^{(+)}/\!/NiMoO_4\text{-}H_2^{(\text{-})}$ with other available water or

References

Electrolyzer configurations	Water electrolysis @ 200 mA/cm ²	Water electrolysis @ 500 mA/cm ²	
$Ni_{x}FeN/Ni_{3}N^{(+)} NiMo O_{4}-H_{2}^{(-)} NiMo$	1.576 V	1.623 V	
NiMoN@NiFeN ⁽⁺⁾ //N iMoN ⁽⁻⁾	1.610 V	1.696 V	
Co ₃ Mo/Cu ^(+/-)	1.680 V	1.801 V	
CoFeZr oxides/NF ^(+/-)	1.820 V	~ 1.86 V	

urea electrolyzers reported thus far.

	(a) 200 mA/cm^2	500 mA/cm ²	
$Ni_{x}FeN/Ni_{3}N^{(+)} NiMo$ $O_{4}-H_{2}^{(-)}$	1.576 V	1.623 V	This work
NiMoN@NiFeN ⁽⁺⁾ //N iMoN ⁽⁻⁾	1.610 V	1.696 V	Nat. Commun. 10, 5106 (2019)
Co ₃ Mo/Cu ^(+/-)	1.680 V	1.801 V	Nat. Commun. 11, 2940 (2020)
CoFeZr oxides/NF ^(+/-)	1.820 V	~ 1.86 V	<i>Adv. Mater.</i> 31 , 1901439 (2019)
Ni ₃ FeN/r-GO ^(+/-)	> 2.10 V	NA	ACS Nano 12, 245-253 (2018)
Fe-O ₂ cat ⁽⁺⁾ // Fe-H ₂ cat ⁽⁻⁾	1.86 V	2.012 V	Chem 4, 1139-1152 (2018)
NiFe LDH/Cu nanowire arrays ^(+/-)	1.785 V	NA	Energy Environ. Sci. 10, 1820-1827 (2017)
Ni _{0.7} Fe _{0.3} S ₂ /Ni foam ^(+/-)	1.91 V	~ 2.07 V	J. Mater. Chem. A 5, 15838-15844 (2017)
$np-Co_{1.04}Fe_{0.96}P^{(+/-)}$	1.65 V	~ 1.743 V	Energy Environ. Sci. 9, 2257-2261 (2016)
NiFe LDH ⁽⁺⁾ // Ni@Cr ₂ O ₃ ⁽⁻⁾	1.670 V	1.670 V	Angew. Chem. Int. Ed. 127 , 12157-12161 (2015)
NiFe LDH ⁽⁺⁾ // NiO/Ni-CNT ⁽⁻⁾	~ 1.667 V	NA	Nat. Commun. 5, 4695 (2014)
Electrolyzer configurations	Urea electrolysis @ 200 mA/cm ²	Urea electrolysis @ 500 mA/cm ²	References
$Ni_xFeN/Ni_3N^{(+)}//$ $NiMoO_4-H_2^{(-)}$	1.373 V	1.472 V	This work
NiMoO-Ar(+)//	1.671 V	~ 1.85 V	Energy Environ. Sci.

NiMoO-H ₂ ⁽⁻⁾			11 , 1890-1897 (2018)
CoFeCr LDH/NF ⁽⁺⁾ //Pt-C/NF ⁽⁻⁾	1.739 V	2.162 V	Appl. Catal B: Environ. 2020, 272, 118959
Co(OH)F/NF ⁽⁺⁾ // CoP/NF ⁽⁻⁾	1.648 V	NA	J. Mater. Chem. A 7, 3697-3703 (2019)
NiMo nanotube ^(+/-)	~ 1.985 V	NA	Nano Energy 60, 894-902 (2019)
$Zn_{0.08}Co_{0.92}P/TM^{(+/-)}$	2.064 V	NA	Adv. Energy Mater. 7, 1700020 (2017)
CoS2-MoS2 ^(+/-)	1.575 V	1.673 V	Adv. Energy Mater. 8 , 1801775 (2018)
Ni ₂ P NF/CC ^(+/-)	1.820 V	~ 2.250 V	J. Mater. Chem. A 5, 3208-3213 (2017)
$Fe_{11.1\%}$ -Ni ₃ S ₂ /Ni foam (+/-)	1.980 V	NA	J. Mater. Chem. A 6, 4346-4353 (2018)
MoP@NiCo-LDH ^(+/-)	1.544 V	1.809 V	J. Mater. Chem. A DOI: 10.1039/d0ta06030e (2020)
Ni ₃ N/NF ^(+/-)	1.501 V	1.705 V	ACS Appl. Mater. Interfaces 11, 13168-13175 (2019)
MS-Ni ₂ P/Ni _{0.96} S ^(+/-)	1.580 V	1.830 V	ACS Appl. Mater. Interfaces 12, 2225-2233 (2020)

Supplementary Note 1: Synthesis of the Ni₃N-1 catalyst on Ni foam.

To synthesize this kind of samples, we just replaced the precursor from iron nitrate to nickel nitrate with other conditions similar to the growth of Ni_xFeN/Ni₃N hybrid, so as to get a similar mass loading of these two catalysts and compare the corresponding catalytic UOR or OER properties.

Supplementary Note 2: Synthesis of the Ni₃N-2 catalyst on Ni foam.

After directly treated at 400 °C in an ammonia environment (NH₃: 100 sccm), the Ni foam was dipped in an ethanol solution, which was dried in air naturally. Subsequently, the pre-modified Ni foam was placed at the middle of a tube furnace for a second nitridation under the same conditions as the $\rm Ni_xFeN/\rm Ni_3N$ to gain $\rm Ni_3N/\rm NF.$