Supplementary information

Unprecedented high efficiency for photocatalytic conversion of methane into methanol over Au-Pd/TiO₂ – what is the role of each component in the system?

Xiaojiao Cai,^a Siyuan Fang,^b Yun Hang Hu^{ab*}

^a School of Environmental Science and Engineering, Shanghai Jiao Tong University,
 Shanghai 200240, People's Republic of China

^b Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States

*Corresponding author: <u>yunhangh@mtu.edu</u>

1. X-ray diffraction patterns

As shown in Fig. S1, all the samples had similar XRD patterns. Characteristic peaks at 25.4°, 37.9°, 48.1°, 54.1°, 55.2°, 62.9°, and 75.2° are corresponding to (101), (004), (200), (105), (211), (204), and (215) planes of anatase TiO₂ (JCPDS, no.21-1272) respectively, while no peak due to rutile TiO₂ was observed. Characteristic diffraction peaks of Au or Pd were not observed either, indicating the high dispersion and small size of metal NPs. Furthermore, the peak corresponding to anatase TiO₂ (101) shifted to a higher diffraction angle after depositing Au-Pd alloy, implying a stronger affinity between Au-Pd alloy and TiO₂ compared with single Au and Pd NPs.

Fig. S1 XRD patterns of TiO₂, Au/TiO₂, Pd/TiO₂, and Au-Pd/TiO₂.

2. Photocatalytic methane oxidation over Au-Pd/TiO₂ with various Au-Pd loading amounts

Fig. S2 Photocatalytic methane oxidation over Au-Pd/TiO₂ with various Au-Pd loading amounts under UV-visible light irradiation (5 mg catalyst, 30 mL water, 3.0 MPa CH_4 , 1.0 MPa O_2 , 1 h reaction).

3. TEM images of Au-Pd/TiO₂ with various Au-Pd loading amounts and their size distributions.

Fig. S3 TEM images of Au-Pd/TiO₂ with various Au-Pd loading amounts (0.05, 0.10, 0.50, and 2.00 wt.%) and their size distributions.

4. Mott-Schottky plot

Fig. S4 Mott-Schottky plot of Au-Pd/TiO₂ recorded at 1000 Hz.

5. Electron paramagnetic resonance spectra

Fig. S5 EPR spectra of the catalyst suspension with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin probe.

6. Photocatalytic methane oxidation under various partial pressures

Fig. S6 Photocatalytic methane oxidation over $Au-Pd/TiO_2$ under various partial pressures under UV-visible light irradiation (5 mg catalyst, 30 mL water, 1.0-5.0 MPa CH₄, 1.0 MPa O₂, 1 h reaction).

7. Reported photocatalytic activities of methane conversion into methanol

Temp. Catalyst Oxidant Pressure or flowrate Light source Yield (µmol/g·h) Selectivity Ref. (°C) 100 W leg lamp V-MCM-41 NO 0.0006 MPa CH4 22 88.4% 1 3 35 > 270 nm 289 NiO high-power laser 2 TiO₂ 429 dissolved CH₄ 25 H_2O WO₃ 355 nm 529 2598 Ag₂O/WO₃ beta zeolite 10 2.4% (HBEA) medium-pressure mercury 4.5 mL/min CH₄ V-HBEA lamp 11.3 5.3% H_2O 70 Bi-V-HBEA 179 mL/min He 10.7 64% V-HBEA medium-pressure mercury 2.7 81.6% Bi-V-HBEA lamp with UV-cut filter 3.3 100% BiVO₄ thin platelet 65.7 58.2% BiVO4 thick 10% CH4 in Ar 65 5 H_2O 350 W xenon lamp 79.2 85.7% platelet BiVO₄ bipyramid 111.9 85% H_2O 19.9 42% BiVO₄ 6 1 mM NO₂-11.0 100% Bi₂WO₆ flower H_2O 15.6 29.3% Bi2WO6/TiO2 H_2O 10.8 7.9% 7 BiVO₄ platelet H_2O 20.8 51% F/WO₃ H_2O 4.5 mL/min CH₄ medium-pressure mercury 7.9 17.9% 55 lamp La/WO, 17.9 mL/min He H_2O 31.4 46% H_2O 46% 27.2 2 mM Fe³ 37.4% 55.5 mesoporous WO3 0.1 mM Cu2-45.7 30.4% 10 2 mM Ag⁺ 16.5 11.8% 2 mM H₂O₂ 20.3 34.3% 300 W xenon lamp with FeO₂/TiO₂ 70 µmol CH4 in Ar 25 11 $0.8 \text{ mM H}_2\text{O}_2$ 352 90% 710-nm filter 300 W xenon lamp FeOOH/m-WO₃ 1.5 mM H₂O₂ 0.01 MPa CH₄ 25 239 91% 12 420-780 nm pure air containing 1000 g-C₃N₄@Cs_{0.33}WO₃ 300 W xenon lamp 13 O_2 25 4.38 51.6% ppm CH₄ CuMoO₄/SiO₄ 15 14 O_2 CH4:O2 = 9:1 100 1000 W xenon lamp _ MoO₄/SiO₂ 5 silica gel 948 52.1% silicalite 1597 46.5% beta (Si F) 1917 50.7% mercury lamp 15 $O_2(H_2O)$ 0.05 MPa CH_4 25 beta (Al F) 185 nm 3604 49.8% beta (Si OH) 4284 48.0% beta (Al OH) 3965 54.9% 1.0 MPa CH₄ xenon lamp Quantum-sized BiVO₄ 96.6% 16 367 $O_2(H_2O)$ 30 400-780 nm 1.0 MPa O₂ 3.0 MPa CH_4 57 99% 17 Au/black phosphorus 90 xenon lamp $O_2(H_2O)$ 0.3 MPa O₂ TiO₂ 0.0045 MPa CH4 7 1.57% 250 W high-pressure 0.0005 MPa O₂ 18 $O_2(H_2O)$ 60 Mo/TiO₂ mercury lamp 12.5 1.41% 0.0050 MPa He 57% 19 Au-CoO_x/TiO₂ 1500 Pt/ZnO 2225 19.1% 2.0 MPa CH₄ 300 W xenon lamp Pd/ZnO 25 $O_2(H_2O)$ 3035 26.2% 0.1 MPa O2 300-500 nm 20 Au/ZnO 15.7% 2060 Ag/ZnO 365 5% 1.5 MPa CH₄ 30 21 Au/ZnO $O_2(H_2O)$ 686 99% xenon lamp $0.5 MPa O_2$ 42.8% 8557 3.0 MPa CH₄ (30 mL H₂O) (30 mL H₂O) this Au-Pd/TiO₂ $O_2(H_2O)$ 42 xenon lamp 1.0 MPa O_2 12556 42.3% work (50 mL H₂O) (50 mL H₂O)

Table S1. Reported photocatalytic activities of methane conversion into

methanol.

8. Composition of O1s X-ray photoelectron spectra

Table S2. Binding energies and atomic ratios of lattice oxygen (O_L), oxygen from surface hydroxyl (O_H),and oxygen from adsorbed water (O_W).

Sample	O _L	O _H	O_W
Bare TiO ₂	529.80 (68.08%)	531.09 (8.84%)	532.10 (23.07%)
Au/TiO ₂	530.06 (78.91%)	531.13 (10.23%)	532.23 (10.86%)
Pd/TiO ₂	529.82 (87.58%)	530.97 (5.55%)	532.27 (6.87%)
Au-Pd/TiO ₂	529.81 (77.74%)	530.97 (14.53%)	532.31 (7.73%)

Reference

- 1. Y. Hu, M. Anpo and C. Wei, J. Photochem. Photobiol., A 2013, 264, 48-55.
- M. A. Gondal, A. Hameed, Z. H. Yamani and A. Arfaj, *Chem. Phys. Lett.*, 2004, 392, 372-377.
- A. Hameed, I. M. I. Ismail, M. Aslam and M. A. Gondal, *Appl. Catal.*, *A*, 2014, 470, 327-335.
- S. Murcia-López, M. C. Bacariza, K. Villa, J. M. Lopes, C. Henriques, J. R. Morante and T. Andreu, *ACS Catal.*, 2017, 7, 2878-2885.
- W. Zhu, M. Shen, G. Fan, A. Yang, J. R. Meyer, Y. Ou, B. Yin, J. Fortner, M. Foston, Z. Li, Z. Zou and B. Sadtler, ACS Appl. Nano Mater., 2018, 1, 6683-6691.
- S. Murcia-López, K. Villa, T. Andreu and J. R. Morante, *Chem. Commun.*, 2015, 51, 7249-7252.
- S. Murcia-López, K. Villa, T. Andreu and J. R. Morante, *ACS Catal.*, 2014, 4, 3013-3019.
- K. Villa, S. Murcia-López, T. Andreu and J. R. Morante, *Catal. Commun.*, 2015, 58, 200-203.
- K. Villa, S. Murcia-López, J. R. Morante and T. Andreu, *Appl. Catal., B* 2016, 187, 30-36.
- K. Villa, S. Murcia-López, T. Andreu and J. R. Morante, *Appl. Catal.*, B 2015, 163, 150-155.

- J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma and J. Tang, *Nat. Catal.*, 2018, 1, 889-896.
- 12. J. Yang, J. Hao, J. Wei, J. Dai and Y. Li, *Fuel*, 2020, **266**, 117104.
- Y. Li, J. Li, G. Zhang, K. Wang and X. Wu, ACS Sustain. Chem. Eng., 2019, 7, 4382-4389.
- M. D. Ward, J. F. Brazdil, S. P. Mehandru and A. B. Anderson, *J. Phys. Chem.*, 1987, 91, 6515-6521.
- F. Sastre, V. Fornés, A. Corma and H. García, J. Am. Chem. Soc. , 2011, 133, 17257-17261.
- Y. Fan, W. Zhou, X. Qiu, H. Li, Y. Jiang, Z. Sun, D. Han, L. Niu and Z. Tang, *Nat. Sustain.*, 2021, DOI: 10.1038/s41893-021-00682-x.
- L. Luo, J. Luo, H. Li, F. Ren, Y. Zhang, A. Liu, W.-X. Li and J. Zeng, *Nat. Comm.*, 2021, **12**, 1218.
- 18. X. Chen and S. Li, *Chem. Lett.*, 2000, **29**, 314-315.
- H. Song, X. Meng, S. Wang, W. Zhou, S. Song, T. Kako and J. Ye, ACS Catal.,
 2020, 10, 14318-14326.
- H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako and J. Ye, *J. Am. Chem. Soc.*, 2019, 141, 20507-20515.
- W. Zhou, X. Qiu, Y. Jiang, Y. Fan, S. Wei, D. Han, L. Niu and Z. Tang, J. Mater. Chem. A, 2020, 8, 13277-13284.