Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Unavoidable but Minimizable Microdefects in a Polycrystalline Zeolite Membrane: Its Remarkable Performance for Wet CO₂/CH₄ Separations

Yanghwan Jeong,^a Minseong Lee,^a Gihoon Lee,^a

Sungwon Hong,^a Eunhee Jang,^a Nakwon Choi,^{b,c} and Jungkyu Choi*^a

^a Department of Chemical & Biological Engineering, College of Engineering, Korea University,

145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

^{b.} Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST),

Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea

^{c.} KU-KIST Graduate School of Converging Science and Technology, Korea University,

145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

* Corresponding author

E-mail address: jungkyu_choi@korea.ac.kr, Phone: +82-2-3290-4854, and Fax: +82-2-926-6102

Table of Contents

S1. Experimental procedures

- S1.1. Synthesis of heterogeneous particles
- S1.2. Synthesis of heteroepitaxially grown zeolite films
- S1.3. Heterogeneous particles and films calcined under various conditions
- S1.4. Separation performance measurements
- S1.5. Fluorescence confocal optical microscopy analysis
- S1.6. Characterization

S2. Supplemental results and discussion

- S2.1. Properties of the SZ particle series
- S2.2. Properties of the SZ membrane series
- S2.3. CO₂/N₂ separation performances of the SZ membrane series
- S2.4. Comparison of the CO₂/N₂ separation performances of the SZ membrane series and other membranes

Table S1

Figures S1-S21

References

S1. Experimental procedures

S1.1. Synthesis of heterogeneous particles

SSZ-13 particles (S-P, where S and P indicate SSZ-13 zeolites and the form of particles, respectively) were synthesized and further calcined based on detailed experimental procedures reported in our previous study.¹ The average size of S-P was ~230 nm. Subsequently, calcined S-P particles were hydrothermally grown with a synthetic precursor that enabled the synthesis of ZSM-58 zeolites; that is, the growth of calcined S-P particles with the ZSM-58 synthetic precursor containing methyltropinium iodide (MTI) as an organic structure directing agent (OSDA) according to a previously reported method.² The final molar composition of the ZSM-58 synthetic precursor was 23 NaOH: 70 SiO₂: 2800 H₂O: 17.5 MTI. For seeded growth, ~ 0.03 g of calcined S-P was added to ~ 30 mL of the prepared ZSM-58 synthetic precursor, and the mixture was sealed in a Teflon lined stainless-steel autoclave. Subsequently, a hydrothermal reaction was carried out in a preheated oven (PL HV 250, Pluskolab, South Korea) at 130 °C for 10 d while the mixture was rotated at ~45 rpm. The autoclave was then quenched with tap water to stop the reaction. The resulting suspension was transferred to a conical centrifuge tube (Falcon, 50 mL) with deionized (DI) water. Subsequently, the suspension was centrifuged (Combi-514R, Hanil Science Industrial, South Korea) for 20 min. The aqueous part, expect for the white solid in the conical centrifuge tube, was discarded. Fresh DI water was replenished in the conical centrifuge tube. This process was repeated five times to wash the particles thoroughly. The solid particles were recovered and dried in an oven (HB-502M, Pluskolab, South Korea) at 70 °C. For convenience, these dried particles are considered as assynthesized and referred to as SZ-P, where Z indicates the ZSM-58 zeolite used for seeded growth.

S1.2. Synthesis of heteroepitaxially grown zeolite films

First, calcined S-P particles were deposited on a porous α -Al₂O₃ disc to form a uniform seed layer. Approximately 30 mL of the ZSM-58 synthetic precursor used to synthesize SZ-P was added to a Teflon liner, wherein the calcined seed layer was placed in a tilted position with the seeded side facing downward. Subsequently, the liner was sealed in a stainless-steel autoclave, which was transferred to a preheated 130 °C oven (PL_HV_250, Pluskolab, South Korea), and the hydrothermal reaction was conducted under static conditions for 10 d. Detailed information regarding the preparation of the S-P seed layer and the heteroepitaxially grown zeolite film can be found in a previous study.¹ For convenience, the resulting, dried heteroepitaxially grown zeolite film is considered as as-synthesized and referred to as SZ, where S and Z are identical to those in SZ-P except that SZ is a film made on the α -Al₂O₃ disc.

S1.3. Heterogeneous particles and films calcined under various conditions

The SZ-P and SZ samples were calcined under three different conditions. First, the SZ-P and SZ samples were calcined at 550 °C for 12 h in air flowing at 200 mL·min⁻¹ in a box furnace (CRF-M20-UP, Pluskolab, South Korea). For convenience, the calcined SZ-P and SZ samples are referred to as SZ-P_air and SZ_air, respectively, where the calcination environment (here, air) is appended. Second, the SZ-P and SZ samples were calcined at 450 °C for 80 h in oxygen (O₂) flowing at 200 mL·min⁻¹ in the box furnace. For convenience, the resulting samples are referred to as SZ-P_O₂ and SZ_O₂, respectively, where the calcination environment (or O_2 is appended. Finally, the SZ-P and SZ samples were calcined at 250 °C for 40 h in ozone (O₃) in a tubular furnace (a quartz tube with an outer diameter of 50 mm and a wall thickness of 2 mm was used). For convenience, the resulting SZ-P and SZ samples are referred to as SZ-P_O₃ and SZ_O₃, respectively, where O₃ is appended to represent the ozone calcination condition. For the ozone-based calcination, a 5 vol% ozone flow was generated by flowing pure O₂ (99.9%) at 1,000 mL·min⁻¹ through an ozone generator (OZE-020, Ozone Engineering Co., Ltd., South Korea). The particle and film samples were heated at 1 and 0.2 °C·min⁻¹, respectively. For convenience, the calcined SZ particles and SZ membranes (SZ-P_x and SZ_x; x = air, O₂, and O₃) are called as the SZ-P particle and SZ membrane series, respectively.

S1.4. Separation performance measurements

The CO₂/CH₄ and CO₂/N₂ separation performances of the SZ membrane series were measured using the Wicke-Kallenbach method, wherein the total pressures on both the feed and permeate sides were maintained at ~1 atm. The partial pressures of the equimolar CO₂/CH₄ and CO₂/N₂ binary mixtures were approximately 51:51 (kPa/kPa) under dry conditions (referred to as DRY CO₂:CH₄ = 50:50 and DRY CO₂:N₂ = 50:50, respectively). In addition, under wet conditions, the partial pressures of the CO₂/CH₄ and CO₂/N₂ binary mixtures and water vapor were ca. 49:49:3 (kPa/kPa/kPa) (referred to as WET CO₂:CH₄ = 50:50 and WET CO₂:N₂ = 50:50, respectively). Furthermore, a flue gas showing a composition similar to that produced in coal-fired power plants³⁻⁶ was simulated and employed to evaluate the CO₂/N₂ binary mixture were approximately 15:86 (kPa/kPa) under dry conditions (referred to as DRY CO₂:N₂ = 15:85). Under wet conditions, the partial pressures of the CO₂/N₂ mixture and water vapor were ca. 15:84:3 (kPa/kPa) (referred to as WET CO₂:N₂ = 15:85). In addition, the separation performances were measured for equimolar CO₂/CH₄ mixture and CO₂/N₂ binary mixture composed of 15% CO₂ and 85% N₂ while varying the relative humidities of the water vapor. Gas chromatographs (GCs) were used to analyze the molar fluxes of the mixtures for the SZ membrane series. Two GCs of YL 6500 (Young In Chromass, South Korea) and YL 6100 (Young In Chromass, South Korea) were used to measure the CO_2/CH_4 and CO_2/N_2 separation performances, respectively.

S1.5. Fluorescence confocal optical microscopy analysis

The defect structures in SZ_x (x = air, O₂, or O₃) were investigated using fluorescence confocal optical microscopy (FCOM). Specifically, the FCOM images were acquired using a ZEISS LSM 700 confocal microscope with a solid-state laser operating at a 555-nm wavelength. For the FCOM images, fluorescein sodium salt (F6377, Sigma-Aldrich), with molecular size of approximately 1 nm,⁷ was used for dyeing the SZ membrane series because the dye molecule is smaller than the defect sizes in the zeolite membranes and larger than the pores in the DDR zeolite (0.36 × 0.44 nm²).⁸ In preparation for the FCOM analysis, SZ_x (x = air, O₂, or O₃) was dyed with the 1 mM fluorescein sodium salt solution. Specifically, the membrane surface was contacted with the dye solution for 4 d to allow sufficient penetration of the dye molecules into the membrane. The detailed dyeing procedure based on an osmosis-type module is described in a previous study.⁹ Then, top view FCOM images of the dyed SZ membrane series were obtained from the membrane outer surface to the interface between the membrane and the α -Al₂O₃ support at an interval of ~0.25 µm.

The resulting FCOM images were further used to quantitatively estimate the properties (mainly the area fraction and tortuosity) of the defect structures by image processing. In addition, the quantitative properties of the defect structures were complemented with unidimensional permeation modeling. This combination yielded the porosity (or density) and size (or width) of the defects. Simultaneously, we could attribute the contributions of the defective and zeolitic parts to the final molar flux of the CO₂ molecules. Detailed information regarding the quantitative analysis of the defects and the contributions of the defective and zeolitic parts to the final CO₂ molar flux has been provided in previous studies.^{10, 11} In addition, to estimate the rates of CO₂ permeation inhibited by the adsorbed water molecules, we considered the linear combination of permeations by water-molecule-induced defect blockage and outer and inner surface inhibitions can be found elsewhere.¹² In this study, we further decoupled the surface inhibitions by considering the water-molecule-induced permeation resistance on the membrane outer surface (called the outer surface inhibition) and on the inner micropore surface inside the zeolite membrane (called the inner surface inhibition). For this, we estimated the two surface inhibitions according to the Boltzmann-equation-based statistical approach as follows:

$$y = \frac{A_1 - A_2}{1 + e^{(x - x_0)/dx}} + A_2.$$

For simplicity, we assumed that the CO_2 permeation reduced by the outer surface inhibition was determined at a very low water vapor pressure (i.e., the *y*-axis intercept) and that reduced CO_2 permeation rate because of inner surface inhibition gradually increased with the increasing content of water molecules adsorbed inside the micropores.

S1.6. Characterization

Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDX) results were obtained using a Hitachi S-4800 field emission-scanning electron microscope (FE-SEM). In addition, SEM images of calcined S-P were obtained using a Hitachi S-4300 FE-SEM. For the SEM images, the particle and membrane samples were precoated with platinum by a Hitachi-1045 ion sputter. A Rigaku Model D/Max-2500V/PC diffractometer equipped with a Cu K_a radiation source ($\lambda = 0.154$ nm) was used to obtain the X-ray diffraction (XRD) patterns of the particle and membrane samples. For comparison, the simulated XRD patterns of the all-silica CHA and DDR zeolites were acquired using Mercury software (Cambridge Crystallographic Data Centre; CCDC). The corresponding crystallographic information files (CIFs) were downloaded from the International Zeolite Association (IZA) website (http://www.izaonline.org). Thermogravimetric analysis (TGA) results were obtained using a Q50 (TA Instruments, USA) in air and O₂. Weight loss percentage after calcination of SZ-P in air, O₂, and O₃ was obtained by the batch-wise calcination in box (calcination in air and O_2) and tubular (calcination in O_3) furnaces for different durations. First, a weight of SZ-P (approximately 0.1 g) was measured and then placed in a porcelain holder. The porcelain holder was transferred to the box or tubular furnace. Temperature was increased at a heating ramp rate of 10 °C·min⁻¹ to a target temperature. After reaching the target temperature, it was held at 550 °C for up to 12 h under air, at 450 °C for up to 80 h under O₂, and at 250 °C for up to 80 h under O₃. Finally, the final weight of calcined SZ-P was measured again after different durations to calculate the weight loss percentage. Fourier transform infrared (FT-IR) spectroscopy (NicoletTM iS50, Thermo ScientificTM, USA) was used to verify the presence of OSDAs in the particle and membrane samples. The FT-IR spectra of the particle and membrane samples were acquired in the transmittance and attenuated total reflectance (ATR) modes, respectively. Specifically, the SZ-P particle series were pelletized for the FT-IR measurements and mounted in an *in-situ* cell. Subsequently, the *in*situ cell was heated at 200 °C for 12 h to remove any residual moisture and was then cooled to 150 °C under vacuum before starting the measurements. An ASAP 2020 (Micromeritics Instruments Corporation,

USA) was used to measure the adsorption isotherms of CO_2 , CH_4 , and N_2 in SZ-P_air at 30, 50, and 75 °C for the CO_2 and CH_4 molecules and at 10, 20, and 30 °C for the N_2 molecules. In addition, the Ar physisorption isotherms at 87 K for the SZ-P particle series were obtained using the ASAP 2020. In addition, the water vapor adsorption isotherms were measured using a vapor sorption analyzer (DVS Vacuum, Surface Measurement Systems, England) at 50 °C for the SZ-P particle series. To investigate the hydrophobicity of the SZ membrane series, the contact angles of water droplets on the membrane surfaces were obtained using a contact angle analyzer (Phoenix-300, Surface Electro Optics, South Korea).

S2. Supplemental results and discussion

S2.1. Properties of the SZ particle series

Fig. S2a and b reveals the changes in weight of SZ-P at ca. 260 °C in air and at ca. 240 °C in O₂. The TGA result obtained for MTI in air indicates that MTI was oxidized at approximately 310 °C (Fig. S2c). Thus, it is reasonable to accept that the changes in weight observed in Fig. S2a and b were associated with the removal of MTI from the outer surface of SZ-P not from inside. To accurately measure the MTI content inside SZ-P, the sample was heated again at 300 °C for 3 h to remove any external residual MTI (Fig. S2d). Accordingly, the weight of MTI inside SZ-P was ~12 wt%, which was in good agreement with ca. 12 wt% of MTI inside the ZSM-58 zeolites.^{2, 13} This strongly indicates that the DDR zeolites are a major constituent of SZ-P.

S2.2. Properties of the SZ membrane series

We investigated the membrane properties of SZ and SZ_x (x = air, O₂, and O₃). The top and crosssectional view SEM images and water contact angles are shown in Fig. S6. In the top view SEM images in Fig. S6a1-d1, the shapes and sizes of the grains among SZ and SZ_x (x = air, O₂, and O₃) were indistinguishable, indicating that the membrane constituents were negligibly affected by the different calcination methods. The EDX results of the Si and Al atoms shown in Fig. S6a2-d2 indicate the plausible high hydrophobicity of all the SZ membrane series. The SZ membrane series were ~7 µm thick, which is in good agreement with previously reported membrane thickness.¹ In addition, although some Al atoms leached from the α -Al₂O₃ discs during the secondary growth can be incorporated into some parts near the interface,^{14, 15} the majority of the membrane constituents in the SZ membrane series were highly siliceous and plausibly hydrophobic, provided that they were fully calcined (Fig. S6b2-d2). Along with the EDX result, the water droplet contact angles shown in Fig. S6b3-d3 confirm the high hydrophobicity of the SZ membrane series. In contrast, the as-synthesized SZ film exhibited some hydrophilic properties (Fig. S6a3), which could be related to the water-soluble MTI included in the ZSM-58 precursor. Furthermore, the XRD patterns of SZ_x (x = air, O₂, and O₃) shown in Fig. S7 reveal that the major constituent of the hybrid membrane was the DDR zeolite, while the SSZ-13 zeolite originating from the seed layer was a minor constituent.

S2.3. CO₂/N₂ separation performances of the SZ membrane series

The CO₂/N₂ separation performances of the SZ membrane series under both dry and wet conditions are shown in Fig. S9. Specifically, the maximum CO₂/N₂ SFs were 16.2 ± 1.2 for SZ_air (Fig. S9a1), 18.0 ± 2.5 for SZ_O₂ (Fig. S9b1), and 29.2 ± 0.1 for SZ_O₃ (Fig. S9c1) at 30 °C under dry conditions. However, the CO₂/N₂ SFs at 50 °C (a representative temperature of the flue gas emitted from coal-fired power plants) under wet conditions were 14.4 ± 4.0 for SZ_air (Fig. S9a2), 17.9 ± 4.2 for SZ_O₂ (Fig. S9b2), and 14.7 ± 2.4 for SZ_O₃ (Fig. S9c2). In general, the trends of the CO₂ and N₂ permeances observed under dry and wet conditions were similar to those observed for the equimolar CO₂/CH₄ mixtures (Fig. 2a2-c2). However, although the kinetic diameter of CH₄ (0.38 nm) is slightly larger than that of N₂ (0.364 nm), it is relatively much larger than the 8-MR channels in the DDR zeolite (0.36×0.44 nm²). Therefore, the molecular sieve effect was more pronounced for the CO₂/CH₄ mixtures than for the CO₂/N₂ ones, thereby resulting in the extremely high CO₂/CH₄ SFs for the SZ membrane series (~285-673 at 30 °C).

In addition, we carried out CO_2/N_2 permeation tests of the SZ membrane series for a simulated flue gas composition (Fig. S10). For the simulation, we considered the compositions of the main components (15% CO_2 and 85% N_2) and the third most abundant component, water vapor.³⁻⁶ The resulting maximum CO_2/N_2 SFs at 30 °C under dry conditions were 16.2 ± 2.0 for SZ_air (Fig. S10a1), 18.2 ± 1.2 for SZ_O₂ (Fig. S10b1), and 28.6 ± 4.7 for SZ_O₃ (Fig. S10c1). This trend would reflect the degree of defects in the SZ membrane series, which plausibly decreased in the order SZ_air, SZ_O₂, and SZ_O₃. Notably, these values were close to those observed for the equimolar CO_2/N_2 mixtures (Fig. S9a1-c1). This was attributable to the almost linear behaviors of both the CO_2 and N_2 molecules in SZ-P_air up to ~1 bar at 30 °C (Fig. S15). In addition, introducing the water vapor to the dry feed similarly reduced the CO_2/N_2 permeances and, thus, the CO_2/N_2 SFs at 30 °C were comparable, except for that of SZ_O₃, which showed a more pronounced reduction in the CO_2 permeance and, accordingly, a very low CO_2/N_2 SF at 30 °C. Nevertheless, the CO_2/N_2 SFs at 50 °C under wet conditions were as high as 19.6 ± 1.3 for SZ_air (Fig. S10a2), 22.8 ± 2.6 for SZ_O₂ (Fig. S10b2), and 17.2 ± 3.5 for SZ_O₃ (Fig. S10c2). Despite the high

 CO_2/N_2 SFs at 50 °C, the CO_2 permeances through SZ_O₃ drastically decreased, plausibly because of the hydrophilicity of the residual MTI inside the DDR zeolite: ~9 × 10⁻⁹ mol·m⁻²·s⁻¹·Pa⁻¹ for SZ_O₃ was much lower than those of both SZ_air and SZ_O₂ (~3.1-3.2 × 10⁻⁸ mol·m⁻²·s⁻¹·Pa⁻¹ at 50 °C).

In addition to the CO_2/N_2 separation performance plotted as a function of temperature (Fig. S9 and S10), the relative humidity of the water vapor was systematically increased from 0% through 26% and 60% to 100% at 50 °C to determine its effect on the CO_2/N_2 separation performance (Fig. S11a1-c1). As the relative humidity was increased, the CO_2 and N_2 permeances decreased monotonically. Interestingly, the degree of the decreased permeance was comparable for both CO_2 and N_2 , as mentioned above for both SZ_air and SZ_O₂ shown in Fig. S10a1-a2 and b1-b2. Accordingly, the comparable CO_2/N_2 SFs were maintained up to 100% relative humidity. However, the effect of the water vapor on the rates of CO_2/N_2 permeation through SZ_O₃ was distinct; that is, the degree of CO_2 permeance became increasingly pronounced with increasing relative humidity, thus resulting in the monotonically decreasing CO_2/N_2 SFs. Although the apparently defect-free SZ_O₃ achieved the highest CO_2/N_2 SF under dry conditions, it showed rather weak resistance against water vapor, seemingly because of the aforementioned hydrophilicity. This indicates the importance of maximizing hydrophobicity to achieve high CO_2 permeate after removing the water vapor from the feed indicates the robustness of the inorganic zeolite membranes.

By determining the effect of the water vapor on the CO_2/N_2 separation performance, we further confirmed the long-term stabilities of the SZ membrane series at 100% relative humidity and 50 °C (Fig. S11a2-c2). For both SZ_air and SZ_O₂, the CO_2/N_2 SF increased from 15 and 15.6 under dry conditions to 16.2 and 22.8, respectively, at the 100% relative humidity at the expense of the reduced CO_2 permeance (Fig. S11a1-b1 and a2-b2). However, gradually adding the water vapor to the feed monotonically decreased the CO_2/N_2 SF of SZ_O₃ (Fig. S11c1 and c2) from 23.5 under dry conditions to 7.3 at 100% relative humidity. Fig. S11a2-c2 reveals that the hydrophobic SZ membranes (i.e., SZ_air and SZ_O₂) could preserve the high CO_2/N_2 SFs (~16-23) without showing any noticeable performance degradation, whereas SZ_O₃ could not feasibly maintain the original high CO_2/N_2 SF under dry conditions at 100% relative humidity. This strongly supports the desirable hydrophobicity of the zeolite membrane to ensure high CO_2 permselectivities under wet conditions. Despite the intentionally interposed hydrothermal treatment at 200 °C in Fig. S11a2-c2, the SZ membrane series could provide steady CO_2 permselectivities, thereby supporting the application of zeolite membranes.

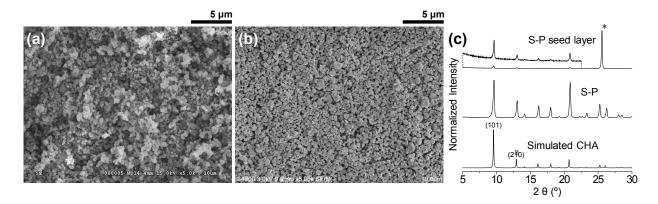
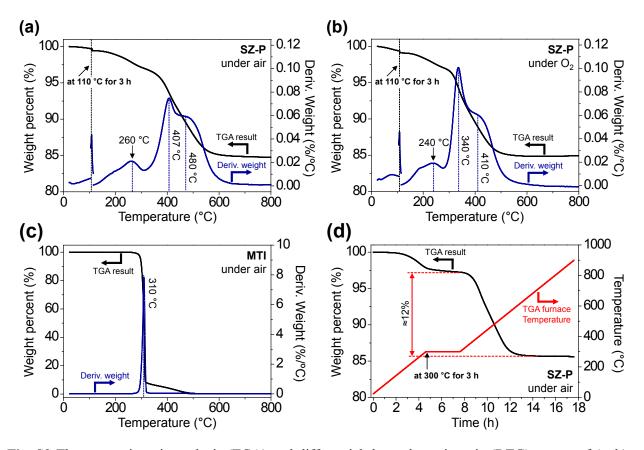
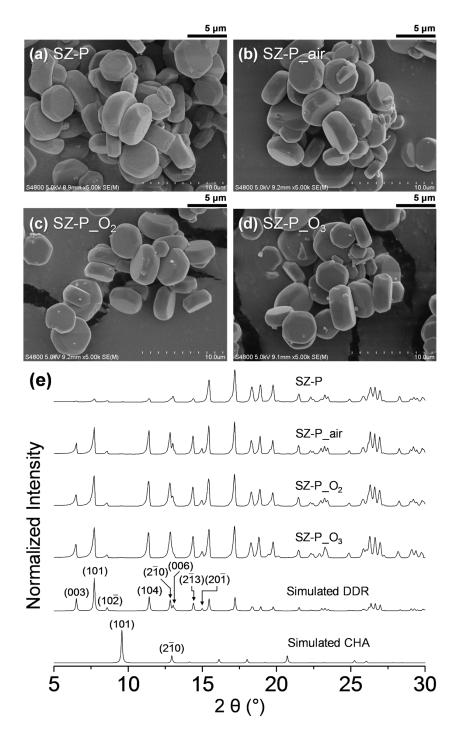
S2.4. Comparison of the CO_2/N_2 separation performances of the SZ membrane series and other membranes

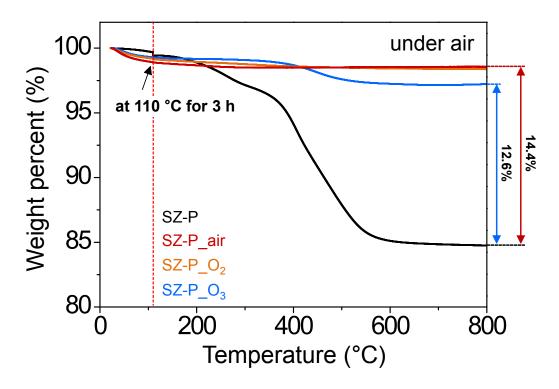
We noticed that the CO_2/N_2 separation performance of the entire SZ membrane series measured at 50 °C could not overcome the Robeson upper bound limit under both dry and wet conditions (Fig. S21a).¹⁶ Nevertheless, SZ O₂ still exhibited very good CO₂/N₂ SFs (ca. 22.8) at the saturated water vapor pressure of 12.3 kPa at 50 °C. Likewise, the SZ membranes series showed the high CO₂/N₂ separation performances under both dry and wet conditions, as compared to those of other zeolite membranes; (1) DDR type: ZSM-5817 and c-oriented DDR,18 (2) CHA type: SSZ-13,19,20 dye-post-treated SSZ-13,10 RTPtreated SSZ-13,12 CHA,21 CVD-treated CHA,22 and SDA-free CHA,23 and (3) faujasite24 zeolites (Fig. S21b). SZ air, which comprises the majority of the ZSM-58 zeolites, showed good CO₂/N₂ separation performances comparable to those of the homogeneous ZSM-58 membrane¹⁷ under both dry and wet conditions. Furthermore, defect-free SZ O₃ showed a very high CO₂/N₂ SF (ca. 23.5) under dry conditions, whereas SZ_air and SZ_O₂ showed the CO₂/N₂ SFs (ca. 14.9-17.2) comparable or superior to those of intact or post-treated CHA type membranes. However, adding the water vapor to the feed resulted in good CO₂/N₂ SFs (ca. 22.8) for SZ O₂. In particular, the hydrophobicity of a zeolite membrane constituent was required for achieving high CO₂ permselectivities under wet conditions, as reflected by the SZ_O₂ performance and the significant performance deterioration in the hydrophilic membrane.24 faujasite zeolite

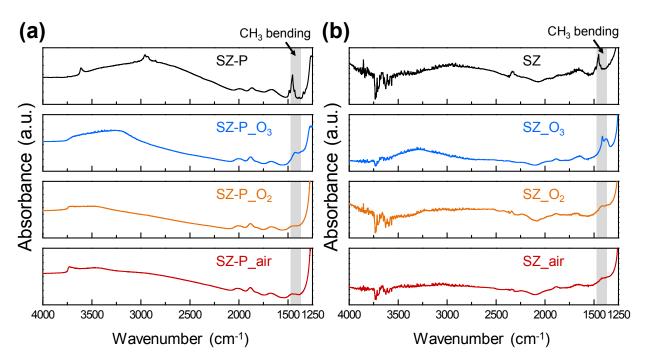
Adsorbed gas	Temp. (°C)	Q_{sat}^{A} (mol·kg ⁻¹)	$\frac{K^A}{(\text{kPa}^{-1}) \times 10^3}$	$-\Delta H_{ads}{}^A$ (kJ·mol ⁻¹)	Q_{sat}^{B} (mol·kg ⁻¹)	$\frac{K^B}{(\mathrm{kPa}^{-1})\times 10^3}$	$-\Delta H_{ads}{}^B$ (kJ·mol ⁻¹)
CO ₂	30	0.15 ± 0.01	33,000 ± 7,580	69.4 ± 13.3	2.69 ± 0.06	11.9 ± 0.48	33.4 ± 0.47
	50		$3,290 \pm 486$			5.34 ± 0.18	
	75		922 ± 3			2.14 ± 0.07	
N ₂	10	0.94 ± 0.01	3.51 ± 0.07	26.4 ± 1.8			
	20		2.50 ± 0.04				
	30		1.68 ± 0.03				
	50		0.89 ^a				
CH ₄	30	1.27 ± 0.03	4.14 ± 0.12	30.2 ± 1.8			
	50		2.13 ± 0.05				
	75		0.88 ± 0.02				

Table S1 Dual-site Langmuir adsorption constants and saturation capacities estimated from CO_2 adsorption isotherms in SZ_air and single-siteLangmuir adsorption constants and saturation capacities estimated from N_2 and CH_4 adsorption isotherms in SZ_air.^{25, 26}

^a Estimated based on the values measured at 10, 20, and 30 °C.


Fig. S1 SEM images of (a) calcined S-P particles and (b) a calcined seed layer comprising the S-P particles shown in (a) along with (c) the corresponding XRD patterns. A magnified XRD pattern of the S-P seed layer is shown above the normalized XRD pattern. In addition, the simulated XRD pattern of all-silica CHA zeolite is added at bottom. Finally, an asterisk (*) denotes a XRD peak originating from an α -Al₂O₃ disc.


Fig. S2 Thermogravimetric analysis (TGA) and differential thermal gravimetric (DTG) curves of (a, b) SZ-P and (c) MTI in (a, c) air and (b) O_2 plotted as a function of temperature up to 800 °C. In (a, b), a black dashed line indicates heat treatment at 110 °C for 3 h to remove weakly adsorbed molecules (e.g., water molecules) from SZ-P. (d) TGA results of SZ-P in air with respect to a temperature profile (marked in red). In (a-c), the samples were heated at 1 °C·min⁻¹ and blue dashed lines indicate peak positions of derivative weight loss curves.

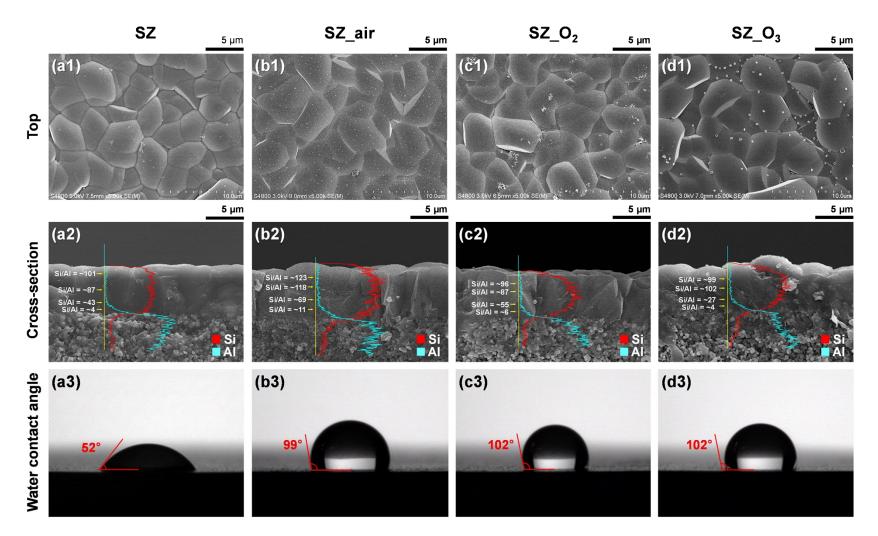

Fig. S3 SEM images of (a) SZ-P, (b) SZ-P_air, (c) SZ-P_O₂, and (d) SZ-P_O₃ along with (e) the corresponding XRD patterns. In (e), the simulated XRD patterns of all-silica CHA and DDR zeolites are provided.

Fig. S4 TGA results of SZ-P (*black*), SZ-P_air (*red*), SZ-P_O₂ (*orange*), and SZ-P_O₃ (*blue*). TGA was measured as a function of temperature up to 800 °C at a ramp rate of 1 °C·min⁻¹. For the removal of weakly adsorbed molecules, heat treatment at 110 °C for 3 h was conducted (indicated by a red dashed line). In addition, weight loss percentage at 800 °C was calculated by setting the weight percent to 100% after the heat treatment at 100 °C (indicated by the red vertical dashed line).

Fig. S5 FT-IR spectra of (a) SZ-P and SZ-P_x (x = air, O₂, and O₃) obtained in the transmission mode and (b) SZ and SZ_x (x = air, O₂, and O₃) obtained in the attenuated total reflection (ATR) mode. IR peak ranges due to the CH₃ bending are marked by shaded areas.

Fig. S6 (a1-d1) Top view SEM images and (a2-d2) cross-sectional view SEM images along with the EDX results for Si (*red*) and Al (*cyan*) of SZ and SZ_x (x = air, O₂, and O₃). (a3-d3) Images of contact angles measured immediately after dropping water onto membrane surfaces. (a1-a3) SZ, (b1-b3) SZ_air, (c1-c3) SZ_O₂, and (d1-d3) SZ_O₃. For better understanding, in (a2-d2), the values of Si/Al ratios estimated from the EDX results are displayed at four points (*indicated by yellow arrows*) of the cross-sectional view SEM images.

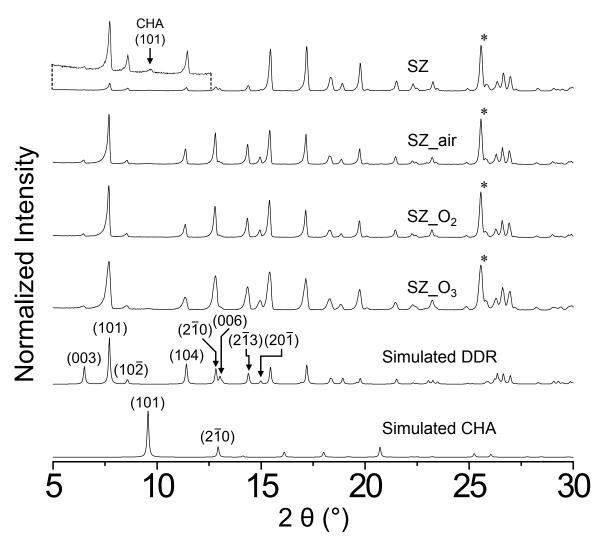
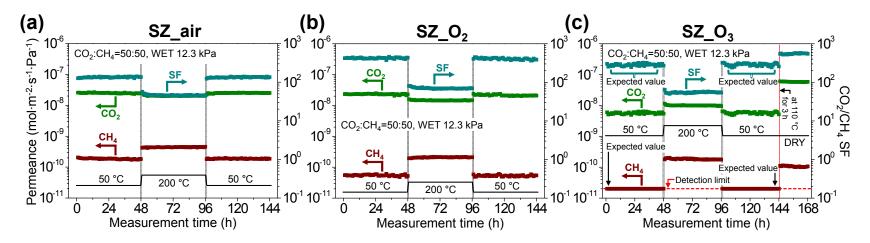
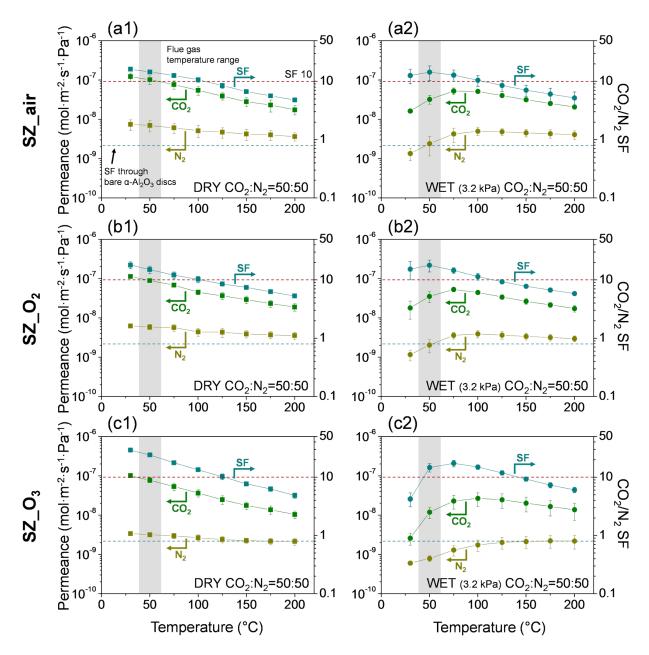




Fig. S7 XRD patterns of SZ, SZ_air, SZ_O₂, and SZ_O₃. For clarity, the magnified XRD pattern of SZ is shown above its normalized one. The simulated XRD patterns of the all-silica CHA and DDR zeolites are added at bottom. Asterisks (*) denote the XRD peaks originating from the α -Al₂O₃ disc.

Fig. S8 Long-term stability tests of (a) SZ_air, (b) SZ_O₂, and (c) SZ_O₃ conducted at 50 °C up to 4 d to separate equimolar CO_2/CH_4 binary mixture feed containing water vapor (12.3 kPa). Harsh conditions at 200 °C for 2 d were intentionally interposed to simulate long-term use. In (c), after long-term stability test of SZ_O₃ at 12.3 kPa under wet conditions, SZ_O₃ was heated at 110 °C for 3 h and then separation performance was measured at 50 °C under dry conditions.

Fig. S9 CO₂/N₂ permeances and SFs of (a1, a2) SZ_air, (b1, b2) SZ_O₂, and (c1, c2) SZ_O₃ measured under both (a1-c1) dry and (a2-c2) wet conditions. Separation performances of the SZ membrane series are plotted as a function of temperature up to 200 °C for equimolar CO₂/N₂ binary mixture feed. Red and cyan dashed lines indicate the CO₂/N₂ SFs of 10 and 0.8 (the SF value through a bare α -Al₂O₃ disc), respectively. For clarity, temperature ranges of flue gases emitted from coal-fired power plants are shaded.

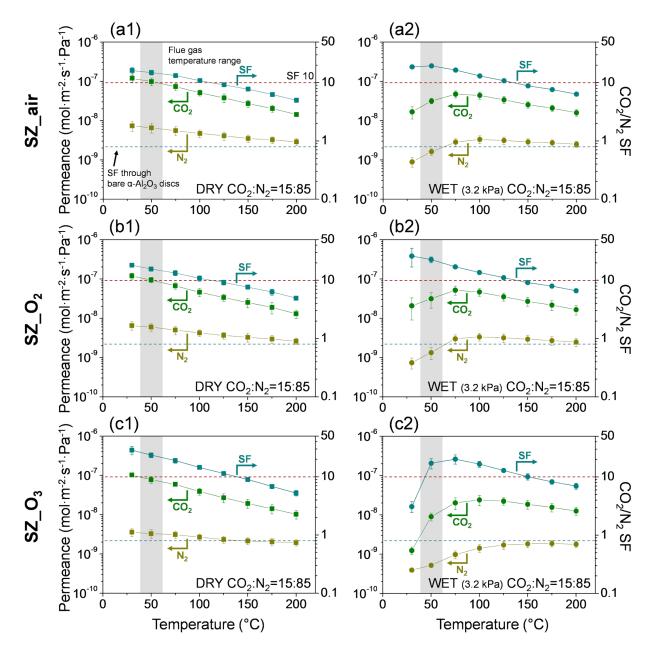
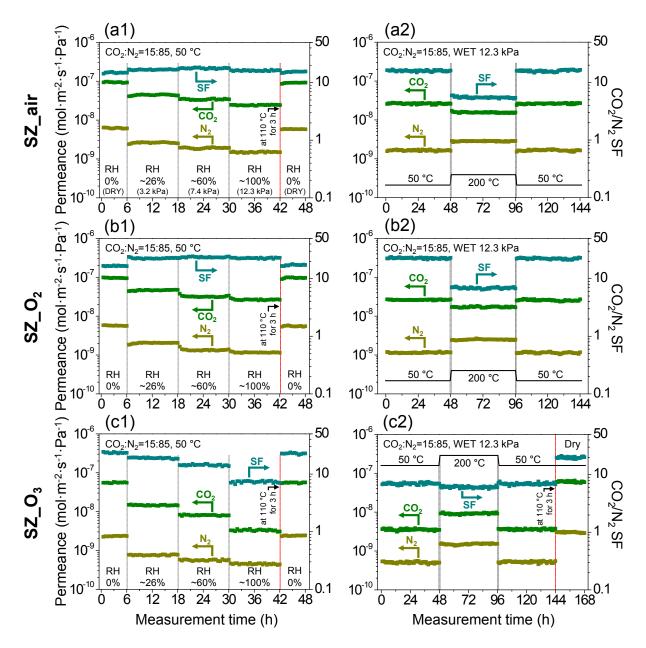
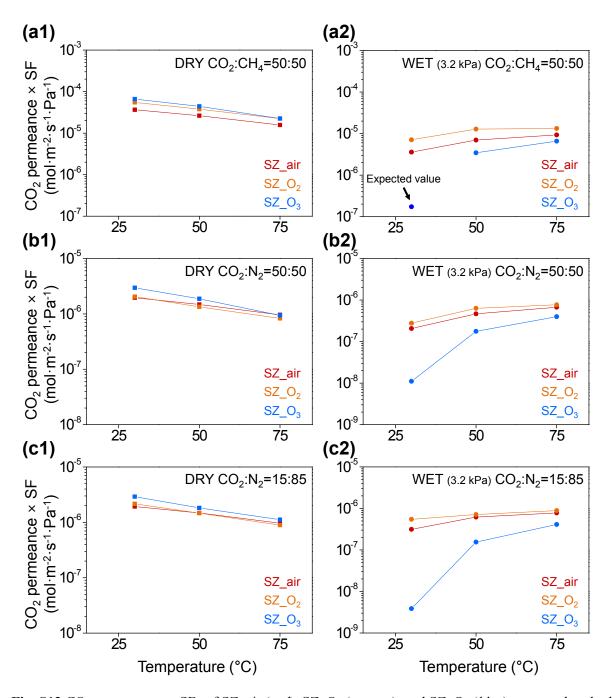
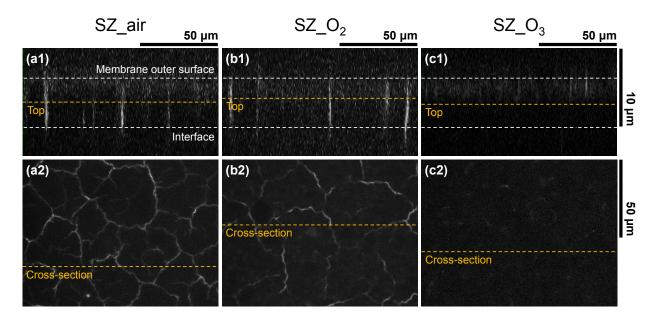
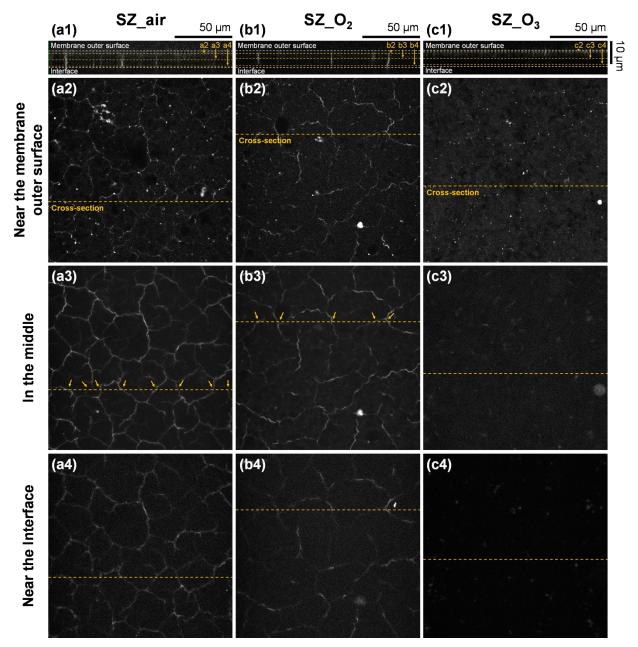
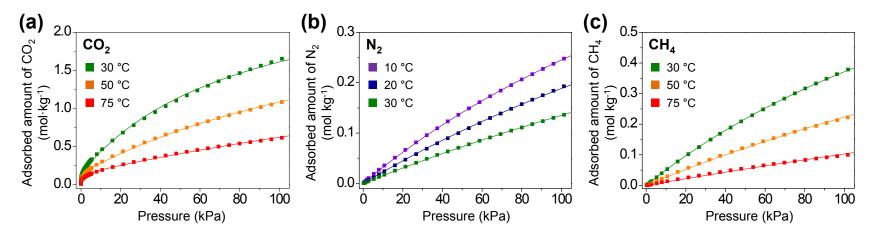
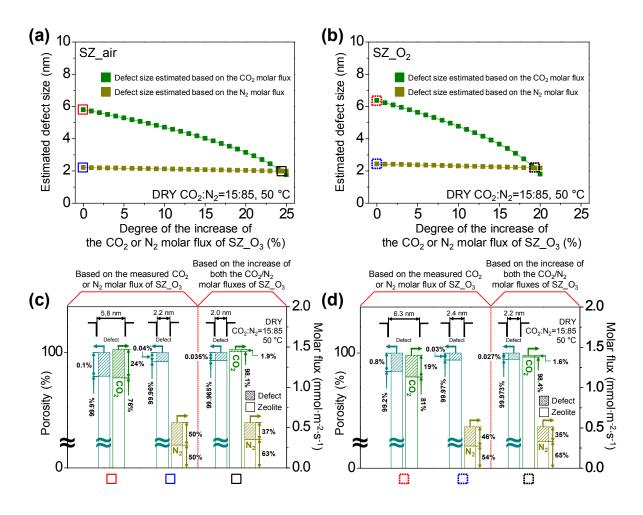




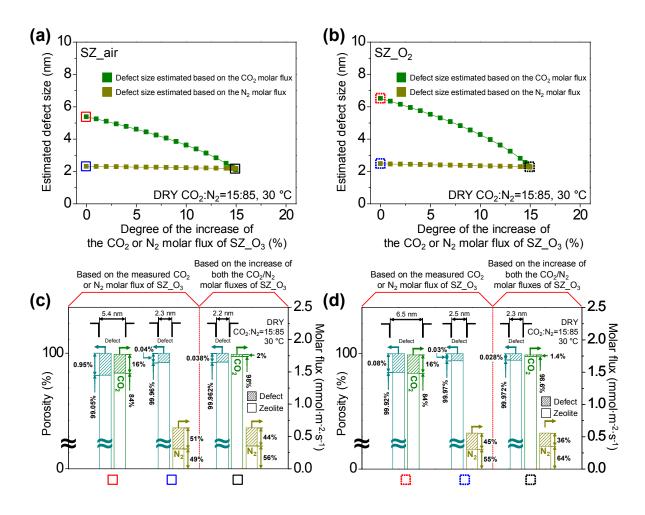
Fig. S10 CO₂/N₂ permeances and SFs of (a1, a2) SZ_air, (b1, b2) SZ_O₂, and (c1, c2) SZ_O₃ measured under both (a1-c1) dry and (a2-c2) wet conditions. Separation performances of SZ membrane series are plotted as a function of temperature up to 200 °C for binary mixture feed composed of 15% CO₂ and 85% N₂. Red and cyan dashed lines indicate the CO₂/N₂ SFs of 10 and 0.8 (the SF value through a bare α -Al₂O₃ disc), respectively. For clarity, temperature ranges of flue gases emitted from coal-fired power plants are shaded.

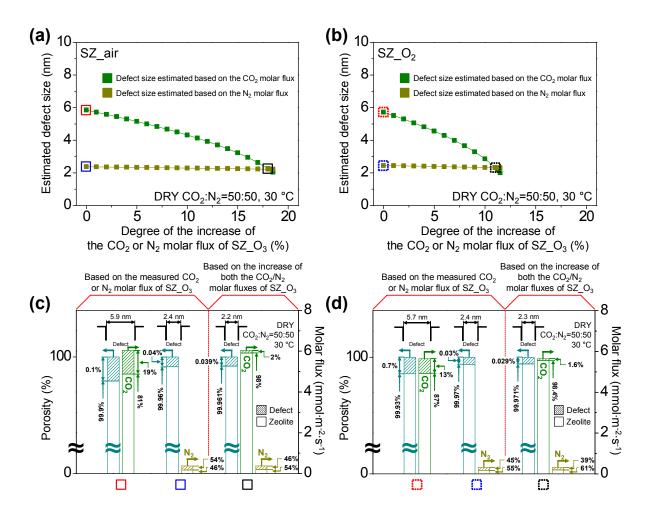
Fig. S11 Stability tests of (a1) SZ_air, (b1) SZ_O₂, and (c1) SZ_O₃ for various humidities. Relative humidity was changed from 0% through ~26% and ~60% to ~100% (corresponding to H₂O partial pressures of 0, 3.2, 7.4, and 12.3 kPa, respectively) at 50 °C in CO₂/N₂ binary mixture feed composed of 15% CO₂ and 85% N₂. Long-term stability tests of (a2) SZ_air, (b2) SZ_O₂, and (c2) SZ_O₃ conducted at 50 °C up to 4 d in CO₂/N₂ binary mixture feed composed of 15% CO₂ and 85% N₂ containing water vapor (12.3 kPa). Harsh conditions at 200 °C for 2 d were intentionally interposed to simulate long-term use. After (a1-c1) relative humidity and (c2) long-term stability tests at 12.3 kPa under wet conditions, samples were heated at 110 °C for 3 h and then separation performances were measured at 50 °C under dry conditions.

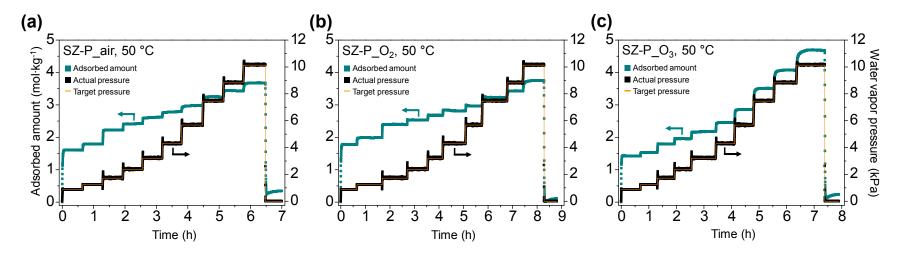
Fig. S12 CO₂ permeances × SFs of SZ_air (*red*), SZ_O₂ (*orange*), and SZ_O₃ (*blue*) measured under both dry (*left*) and wet (*right*) conditions and plotted with respect to the relevant temperature ranges for equimolar (a1, a2) CO₂/CH₄ and (b1, b2) CO₂/N₂ binary mixture feeds and (c1, c2) CO₂/N₂ binary mixture feed composed of 15% CO₂ and 85% N₂.

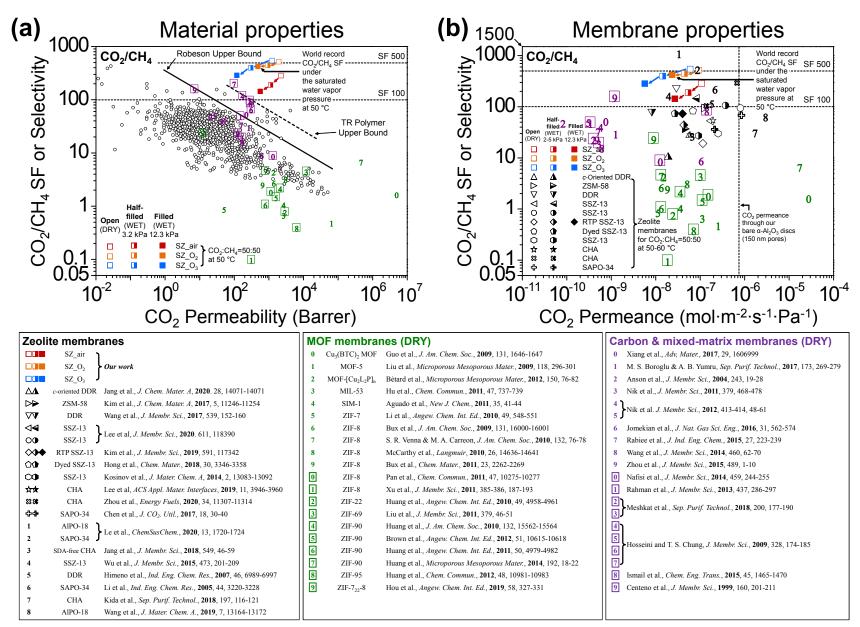





Fig. S13 (a1-c1) Cross-sectional view and (a2-c2) top view FCOM images of (a1-a2) SZ_air, (b1-b2) SZ_O₂, and (c1-c2) SZ_O₃. These images are identical to those shown in Fig. 3, while information of where the images were obtained is given here. In particular, orange dashed lines in (a1-c1) indicate the positions where the top view FCOM images in (a2-c2) were obtained. Likewise, orange dashed lines in (a2-c2) indicate the positions where the cross-sectional view FCOM images in (a1-c1) were obtained. For clarity, white dashed lines in (a1-c1) are added to indicate membrane outer surface (*upper*) and interface between the membrane and α -Al₂O₃ disc (*lower*).


Fig. S14 FCOM images of (a1-a4) SZ_air, (b1-b4) SZ_O₂, and (c1-c4) SZ_O₃. Each membrane sample was dyed with 1 mM fluorescein sodium salt solution for 4 d. First row shows cross-sectional view FCOM images and second to fourth rows show top view FCOM images obtained (a2-c2) near the membrane outer surface, (a3-c3) in the middle, and (a4-c4) near the interface between the membrane and α -Al₂O₃ disc. Cross-sectional view FCOM images were obtained at areas indicated by orange dashed lines in top view FCOM images. Orange dashed lines in cross-sectional view FCOM images in (a1-c1) indicate positions of top view FCOM images shown in (y2-y4), where y = a, b, and c. White dashed lines in cross-sectional view FCOM images in (a1-c1) indicate the membrane outer surface and interface. For convenience, cracks shown in (a1, b1) are indicated by orange arrows in (a3, b3).


Fig. S15 Adsorption isotherms of (a) CO_2 , (b) N_2 , and (c) CH_4 in SZ-P_air. Adsorption isotherms of CO_2 and CH_4 in (a, c) were measured at 30, 50, and 75 °C, while that of N_2 in (b) was measured at 10, 20, and 30 °C. The fitted curves based on the parameters given in Table S1 are displayed as well.


Fig. S16 Defect sizes for (a) SZ_air and (b) SZ_O₂ estimated by combining quantitative properties extracted from the FCOM images and unidimensional permeation modeling. To simulate intrinsic membrane performance, the CO₂ and N₂ molar fluxes of defect-free SZ_O₃ were equally increased, while preserving the corresponding CO₂/N₂ SF. (c, d) Porosities of defective and zeolitic parts and their corresponding contributions to the total CO₂ and N₂ molar fluxes of (c) SZ_air and (d) SZ_O₂ for CO₂/N₂ binary mixture feed composed of 15% CO₂ and 85% N₂ at 50 °C. Results corresponding to points marked by red, blue, and black boxes in (a) and dashed boxes in (b) are displayed in (c, d), respectively.


Fig. S17 Defect sizes for (a) SZ_air and (b) SZ_O₂ estimated by combining quantitative properties extracted from the FCOM images and unidimensional permeation modeling. To simulate intrinsic membrane performance, the CO₂ and N₂ molar fluxes of defect-free SZ_O₃ were equally increased, while preserving the corresponding CO₂/N₂ SF. (c, d) Porosities of defective and zeolitic parts and their corresponding contributions to the total CO₂ and N₂ molar fluxes of (c) SZ_air and (d) SZ_O₂ for CO₂/N₂ binary mixture feed composed of 15% CO₂ and 85% N₂ at 30 °C. Results corresponding to points marked by red, blue, and black boxes in (a) and dashed boxes in (b) are displayed in (c, d), respectively.

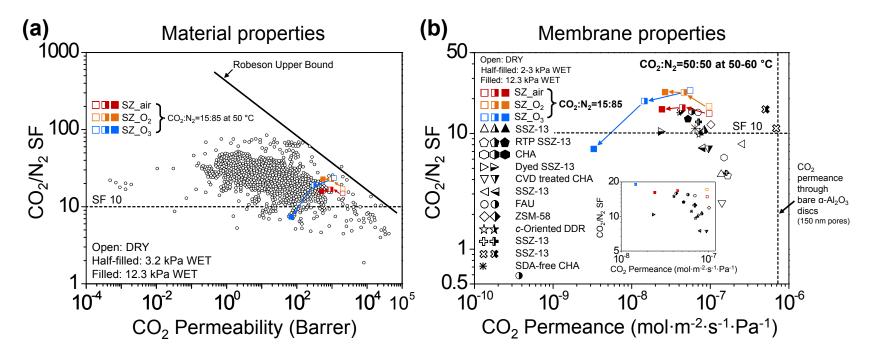

Fig. S18 Defect sizes for (a) SZ_air and (b) SZ_O₂ estimated by combining quantitative properties extracted from the FCOM images and unidimensional permeation modeling. To simulate intrinsic membrane performance, the CO₂ and N₂ molar fluxes of defect-free SZ_O₃ were equally increased, while preserving the corresponding CO₂/N₂ SF. (c, d) Porosities of defective and zeolitic parts and their corresponding contributions to the total CO₂ and N₂ molar fluxes of (c) SZ_air and (d) SZ_O₂ for equimolar CO₂/N₂ binary mixture feed at 30 °C. Results corresponding to points marked by red, blue, and black boxes in (a) and dashed boxes in (b) are displayed in (c, d), respectively.

Fig. S19 Water vapor uptakes (*cyan*) in (a) SZ-P_air, (b) SZ-P_O₂, and (c) SZ-P_O₃ measured at different water vapor pressures (0.9, 1.2, 1.7, 2.3, 3.2, 4.2, 5.7, 7.4, 8.8, and 12.3 kPa) and 50 °C. In (a-c), target (*orange*) and actual (*black*) water vapor pressures are also displayed.

Fig. S20 (a) CO₂/CH₄ SFs (or selectivities) vs. CO₂ permeabilities of SZ_air (*red*), SZ_O₂ (*orange*), and SZ_O₃ (*blue*) under dry conditions (*open*) and wet conditions (ca. 3.2 kPa (*half-filled*) and 12.3 kPa (*filled*)) at 50 °C. For comparison, the performances of polymeric (\odot),¹⁶ metal organic framework (MOF) (*green*),^{27.46} and carbon & mixed-matrix (*purple*)^{47.61} membranes under dry conditions are included. In addition, Robeson and thermally rearranged (TR) polymer upper bounds are denoted by black solid and dashed lines, respectively.¹⁶ (b) CO₂/CH₄ SFs (or selectivities) vs. CO₂ permeances of the SZ membrane series and other zeolite membranes (*marked by symbol*)^{10, 12, 17-21, 62-64} measured at 50-60 °C under dry conditions (*open for symbols*) and wet conditions (ca. 2-5 kPa (*half-filled*) and 12.3 kPa (*filled*)). For comparison, the performances of additional zeolite (*numbered*),^{23, 65-70} MOF (*green*),^{27.46} and carbon & mixed-matrix (*purple*)^{47-49, 51-58, 60, 61} membranes under dry conditions are included. Horizontal dashed lines in (a, b) indicate CO₂/CH₄ SFs of 100 and 500. A vertical dashed line in (b) indicates CO₂ permeance estimated through Knudsen diffusion of a bare α-Al₂O₃ disc having 150 nm pores. Detailed information about the membranes used for the graphs is described below.

Fig. S21 (a) CO_2/N_2 SFs vs. CO_2 permeabilities of SZ_air (*red*), SZ_O₂ (*orange*), and SZ_O₃ (*blue*) under dry conditions (*open*) and wet conditions (ca. 3.2 kPa (*half-filled*) and 12.3 kPa (*filled*)) at 50 °C. In (a), for comparison, the performances of polymeric membranes (*open dots*) and Robeson upper bound is denoted by the black line.¹⁶ (b) CO_2/N_2 SFs vs. CO_2 permeances of the SZ membrane series and other zeolite membranes^{10, 12, 17-24} measured at 50-60 °C under dry conditions (*open*) and wet conditions (ca. 2-3 kPa (*half-filled*) and 12.3 kPa (*filled*)). In (b), for clarity, the concentrated part of separation performances is illustrated in the inset graph. Horizontal dashed lines in (a, b) indicate the CO_2/N_2 SF of 10, while a vertical dashed line in (b) indicates CO_2 permeance through Knudsen diffusion of a bare α -Al₂O₃ disc having 150 nm pores.

References

- Y. Jeong, S. Hong, E. Jang, E. Kim, H. Baik, N. Choi, A. C. K. Yip and J. Choi, *Angew. Chem. Int. Ed.*, 2019, 58, 18654-18662.
- 2. J. Kuhn, J. Gascon, J. Gross and F. Kapteijn, Microporous Mesoporous Mater., 2009, 120, 12-18.
- 3. D. M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem. Int. Ed., 2010, 49, 6058-6082.
- 4. R. Balasubramanian and S. Chowdhury, J. Mater. Chem. A, 2015, 3, 21968-21989.
- 5. T. C. Merkel, H. Q. Lin, X. T. Wei and R. Baker, J. Membr. Sci., 2010, 359, 126-139.
- 6. D. Singh, E. Croiset, P. L. Douglas and M. A. Douglas, *Energy Convers. Manag.*, 2003, 44, 3073-3091.
- 7. J. Choi, H. K. Jeong, M. A. Snyder, J. A. Stoeger, R. I. Masel and M. Tsapatsis, Science, 2009, 325, 590-593.
- 8. N. Hedin, G. J. DeMartin, W. J. Roth, K. G. Strohmaier and S. C. Reyes, *Microporous Mesoporous Mater.*, 2008, **109**, 327-334.
- 9. T. Lee, J. Choi and M. Tsapatsis, J. Membr. Sci., 2013, 436, 79-89.
- S. Hong, D. Kim, Y. Jeong, E. Kim, J. C. Jung, N. Choi, J. Nam, A. C. K. Yip and J. Choi, *Chem. Mater.*, 2018, 30, 3346-3358.
- 11. S. Hong, D. Kim, H. Richter, J. H. Moon, N. Choi, J. Nam and J. Choi, J. Membr. Sci., 2019, 569, 91-103.
- 12. J. Kim, E. Jang, S. Hong, D. Kim, E. Kim, H. Ricther, A. Simon, N. Choi, D. Korelskiy, S. Fouladvand, J. Nam and J. Choi, *J. Membr. Sci.*, 2019, **591**, 117342.
- J. Kuhn, J. M. Castillo-Sanchez, J. Gascon, S. Calero, D. Dubbeldam, T. J. H. Vlugt, F. Kapteijn and J. Gross, *J. Phys. Chem. C*, 2009, **113**, 14290-14301.
- 14. M. Pan and Y. S. Lin, Microporous Mesoporous Mater., 2001, 43, 319-327.
- J. Hedlund, J. Sterte, M. Anthonis, A. J. Bons, B. Carstensen, N. Corcoran, D. Cox, H. Deckman, W. De Gijnst,
 P. P. de Moor, F. Lai, J. McHenry, W. Mortier and J. Reinoso, *Microporous Mesoporous Mater.*, 2002, 52, 179-189.
- 16. L. M. Robeson, J. Membr. Sci., 2008, 320, 390-400.
- 17. E. Kim, S. Hong, E. Jang, J. H. Lee, J. C. Kim, N. Choi, C. H. Cho, J. Nam, S. K. Kwak, A. C. K. Yip and J. Choi, *J. Mater. Chem. A*, 2017, **5**, 11246-11254.
- E. Jang, J. H. Lee, S. Hong, Y. Jeong, J. C. Kim, D. Kim, H. Baik, E. Kim, N. Choi, J. Nam, S. J. Cho, S. K. Kwak and J. Choi, *J. Mater. Chem. A*, 2020, 8, 14071-14081.
- N. Kosinov, C. Auffret, C. Gucuyener, B. M. Szyja, J. Gascon, F. Kapteijn and E. J. M. Hensen, *J. Mater. Chem. A*, 2014, **2**, 13083-13092.
- 20. M. Lee, Y. Jeong, S. Hong and J. Choi, J. Membr. Sci., 2020, 611, 118390.
- M. Lee, S. Hong, D. Kim, E. Kim, K. Lim, J. C. Jung, H. Richter, J. H. Moon, N. Choi, J. Nam and J. Choi, ACS Appl. Mater. Interfaces, 2019, 11, 3946-3960.
- 22. E. Kim, T. Lee, H. Kim, W. J. Jung, D. Y. Han, H. Baik, N. Choi and J. Choi, *Environ. Sci. Technol.*, 2014, **48**, 14828-14836.
- 23. E. Jang, S. Hong, E. Kim, N. Choi, S. J. Cho and J. Choi, J. Membr. Sci., 2018, 549, 46-59.

- 24. X. H. Gu, J. H. Dong and T. M. Nenoff, Ind. Eng. Chem. Res., 2005, 44, 937-944.
- 25. J. van den Bergh, W. Zhu, J. Gascon, J. A. Moulijn and F. Kapteijn, J. Membr. Sci., 2008, 316, 35-45.
- 26. P. M. Mathias, R. Kumar, J. D. Moyer, J. M. Schork, S. R. Srinivasan, S. R. Auvil and O. Talu, *Ind. Eng. Chem. Res.*, 1996, **35**, 2477-2483.
- 27. H. L. Guo, G. S. Zhu, I. J. Hewitt and S. L. Qiu, J. Am. Chem. Soc., 2009, 131, 1646-1647.
- 28. Y. Y. Liu, Z. F. Ng, E. A. Khan, H. K. Jeong, C. B. Ching and Z. P. Lai, *Microporous Mesoporous Mater.*, 2009, **118**, 296-301.
- 29. A. Betard, H. Bux, S. Henke, D. Zacher, J. Caro and R. A. Fischer, *Microporous Mesoporous Mater.*, 2012, **150**, 76-82.
- Y. X. Hu, X. L. Dong, J. P. Nan, W. Q. Jin, X. M. Ren, N. P. Xu and Y. M. Lee, *Chem. Commun.*, 2011, 47, 737-739.
- S. Aguado, C. H. Nicolas, V. Moizan-Basle, C. Nieto, H. Amrouche, N. Bats, N. Audebrand and D. Farrusseng, *New J. Chem.*, 2011, 35, 41-44.
- 32. Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang and J. Caro, Angew. Chem. Int. Ed., 2010, 49, 548-551.
- 33. H. Bux, F. Y. Liang, Y. S. Li, J. Cravillon, M. Wiebcke and J. Caro, J. Am. Chem. Soc., 2009, **131**, 16000-16001.
- 34. S. R. Venna and M. A. Carreon, J. Am. Chem. Soc., 2010, 132, 76-78.
- 35. M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett and H. K. Jeong, Langmuir, 2010, 26, 14636-14641.
- 36. H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y. S. Li and J. Caro, Chem. Mater., 2011, 23, 2262-2269.
- 37. Y. C. Pan, Y. Y. Liu, G. F. Zeng, L. Zhao and Z. P. Lai, Chem. Commun., 2011, 47, 2071-2073.
- G. S. Xu, J. F. Yao, K. Wang, L. He, P. A. Webley, C. S. Chen and H. T. Wang, J. Membr. Sci., 2011, 385, 187-193.
- 39. A. S. Huang, H. Bux, F. Steinbach and J. Caro, Angew. Chem. Int. Ed., 2010, 49, 4958-4961.
- 40. Y. Y. Liu, G. F. Zeng, Y. C. Pan and Z. P. Lai, J. Membr. Sci., 2011, 379, 46-51.
- 41. A. S. Huang, W. Dou and J. Caro, J. Am. Chem. Soc., 2010, 132, 15562-15564.
- A. J. Brown, J. R. Johnson, M. E. Lydon, W. J. Koros, C. W. Jones and S. Nair, *Angew. Chem. Int. Ed.*, 2012, 51, 10615-10618.
- 43. A. S. Huang and J. Caro, Angew. Chem. Int. Ed., 2011, 50, 4979-4982.
- 44. A. S. Huang, Q. Liu, N. Y. Wang and J. Caro, Microporous Mesoporous Mater., 2014, 192, 18-22.
- 45. A. S. Huang, Y. F. Chen, N. Y. Wang, Z. Q. Hu, J. W. Jiang and J. Caro, *Chem. Commun.*, 2012, **48**, 10981-10983.
- 46. Q. Q. Hou, Y. Wu, S. Zhou, Y. Y. Wei, J. Caro and H. H. Wang, Angew. Chem. Int. Ed., 2019, 58, 327-331.
- 47. L. Xiang, L. Q. Sheng, C. Q. Wang, L. X. Zhang, Y. C. Pan and Y. S. Li, Adv. Mater., 2017, 29, 1606999.
- 48. M. S. Boroglu and A. B. Yumru, Sep. Purif. Technol., 2017, 173, 269-279.
- 49. M. Anson, J. Marchese, E. Garis, N. Ochoa and C. Pagliero, J. Membr. Sci., 2004, 243, 19-28.
- 50. O. G. Nik, X. Y. Chen and S. Kaliaguine, J. Membr. Sci., 2011, 379, 468-478.
- 51. O. G. Nik, X. Y. Chen and S. Kaliaguine, J. Membr. Sci., 2012, 413, 48-61.

- 52. A. Jomekian, R. M. Behbahani, T. Mohammadi and A. Kargari, J. Nat. Gas Sci. Eng., 2016, 31, 562-574.
- 53. H. Rabiee, S. M. Alsadat, M. Soltanieh, S. A. Mousavi and A. Ghadimi, J. Ind. Eng. Chem., 2015, 27, 223-239.
- 54. S. F. Wang, Y. Liu, S. X. Huang, H. Wu, Y. F. Li, Z. Z. Tian and Z. Y. Jiang, J. Membr. Sci., 2014, 460, 62-70.
- T. T. Zhou, L. Luo, S. Hua, S. F. Wang, R. N. Zhang, H. Wu, Z. Y. Jiang, B. Y. Wang and J. Yang, *J. Membr. Sci.*, 2015, 489, 1-10.
- 56. V. Nafisi and M. B. Hagg, J. Membr. Sci., 2014, 459, 244-255.
- M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M. M. Khan and V. Abetz, J. Membr. Sci., 2013, 437, 286-297.
- 58. S. Meshkat, S. Kaliaguine and D. Rodrigue, Sep. Purif. Technol., 2018, 200, 177-190.
- 59. S. S. Hosseini and T. S. Chung, J. Membr. Sci., 2009, 328, 174-185.
- 60. N. H. Ismail, W. N. W. Salleh, N. Sazali and A. F. Ismail, Chem. Eng. Trans., 2015, 45, 1465-1470.
- 61. T. A. Centeno and A. B. Fuertes, J. Membr. Sci., 1999, 160, 201-211.
- 62. L. Wang, C. Zhang, X. C. Gao, L. Peng, J. Jiang and X. H. Gu, J. Membr. Sci., 2017, 539, 152-160.
- 63. Y. Chen, Y. T. Zhang, C. Zhang, J. Jiang and X. H. Gu, J. CO₂ Util., 2017, 18, 30-40.
- 64. J. J. Zhou, F. Gao, K. Sun, X. Y. Jin, Y. Zhang, B. Liu and R. F. Zhou, *Energy Fuels*, 2020, 34, 11307-11314.
- Q. T. Le, D. H. P. Nguyen, N. M. Nguyen, D. P. H. Nguyen, T. M. Nguyen, T. N. Nguyen and T. C. T. Pham, *ChemSusChem*, 2020, 13, 1720-1724.
- T. Wu, M. C. Diaz, Y. Zheng, R. Zhou, H. H. Funke, J. L. Falconer and R. D. Noble, *J. Membr. Sci.*, 2015, 473, 201-209.
- S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima and S. Yoshida, *Ind. Eng. Chem. Res.*, 2007, 46, 6989-6997.
- S. G. Li, J. G. Martinek, J. L. Falconer, R. D. Noble and T. Q. Gardner, *Ind. Eng. Chem. Res.*, 2005, 44, 3220-3228.
- 69. K. Kida, Y. Maeta and K. Yogo, Sep. Purif. Technol., 2018, 197, 116-121.
- 70. B. Wang, F. Gao, F. Zhang, W. H. Xing and R. F. Zhou, J. Mater. Chem. A, 2019, 7, 13164-13172.