Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Boosting the capacity of biomass-based supercapacitor using carbon materials of

wood derivatives and redox molecules from plants

Tiansheng Wang^{a, b, c}, Shunyou Hu^{b, c}, Dong Wu^{b, c}, Weiwei Zhao^{b, c}, Wen Yu^{b, c}, Mi Wang^{b, c}, Jie

Xu^{a, c*}, Jiaheng Zhang^{a, b, c*}

^aSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China

^bSauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

^cSchool of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055,

China

Corresponding author.

* Email addresses: xjhit@hit.edu.cn; zhangjiaheng@hit.edu.cn

Fig. S1. Typical SEM images of the OLS-1 sample (a–c) and OLS-2 sample (d–f) obtained by LS with molecular weights of 13400 and 4000, respectively: (a, b, d and e) low magnification, (c and f) high magnification.

Fig. S2. Typical SEM images of the CLS-1 sample (a–c) and CLS-2 sample (d–f) prepared by OLS-1 and OLS-2, respectively: (a, b, d and e) low magnification, (c and f) high magnification.

Fig. S3. Typical SEM images of the PGLS-3 sample (a–c) and PGLS-4 sample (d–f) prepared by OLS-1 and OLS-2 through the action of KOH and FeCl₃, respectively: (a and d) low magnification, (b, c, e and f) high magnification.

Fig. S4. Electrochemical performance of a single PGLS-1 electrode (a–b), PGLS-3 electrode (c–d) and CLS-1 electrode (e–f) measured in a three-electrode system using 6 M KOH as the electrolyte. (a) The CV profiles of the PGLS-1 electrode collected at different scan rates (from 5 to 200 mV s⁻¹) in the potential range of -1-0 V. (b) The GCD profiles of the PGLS-1 electrode recorded in the potential range of -1-0 V at different current density (from 0.5 to 10 A g⁻¹). (c) The CV profiles of the PGLS-3 electrode collected at different scan rates (from 5 to 200 mV s⁻¹) in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-3 electrode recorded in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-3 electrode recorded in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-3 electrode recorded in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-3 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-1 electrode recorded in the potential range of -1-0 V at different current density (from 0.5 to 10 A g⁻¹).

Fig. S5. Electrochemical performance of a single PGLS-2 electrode (a–b), PGLS-4 electrode (c–d) and CLS-2 electrode (e–f) measured in a three-electrode system using 6 M KOH as the electrolyte. (a) The CV profiles of the PGLS-2 electrode collected at different scan rates (from 5 to 200 mV s⁻¹) in the potential range of -1-0 V. (b) The GCD profiles of the PGLS-2 electrode recorded in the potential range of -1-0 V at different current density (from 0.5 to 10 A g⁻¹). (c) The CV profiles of the PGLS-4 electrode collected at different scan rates (from 5 to 200 mV s⁻¹) in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-4 electrode recorded in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-4 electrode recorded in the potential range of -1-0 V. (d) The GCD profiles of the PGLS-4 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V. (f) The GCD profiles of the CLS-2 electrode recorded in the potential range of -1-0 V at different current density (from 0.5 to 10 A g⁻¹).

Fig. S6. Electrochemical performance of the composite electrodes with different ARS:PGLS-1 ratios measured in a three-electrode system using 6 M KOH as the electrolyte. The CV profiles of the ARS:PGLS-1=1 (a), ARS:PGLS-1=2 (b) and ARS:PGLS-1=0.5 (c) electrode, respectively, collected at different scan rates (from 5 to 200 mV s⁻¹) in the potential range of -1-0 V. The GCD profiles of the ARS:PGLS-1=1 (d), ARS:PGLS-1=2 (e) and ARS:PGLS-1=0.5 (f) electrode, respectively, recorded in the potential range of -1-0 V at different current density (from 0.5 to 10 A g⁻¹).

Samples	^{<i>a</i>} S _{BET} (m ² /g)	^b S _{micro} (cm ³ /g)	^c S _{ext} (cm ³ /g)	^d V _{total} (cm ³ /g)	$^{e}V_{ m micro}$ (cm ³ /g)	$f_{V_{\rm meso}}$ (cm ³ /g)	^g D _{aver} (nm)
CLS-1	55.33	50.69	4.64	0.03	0.01	0.02	2.35
PGLS-3	581.61	459.05	122.56	0.72	0.41	0.31	4.92
PGLS-1	1727.70	1326.32	401.38	1.33	0.73	0.60	3.15
CLS-2	161.69	135.90	25.79	0.09	0.04	0.05	2.30
PGLS-4	596.26	445.74	150.52	0.59	0.30	0.29	3.97
PGLS-2	782.74	633.80	148.94	0.71	0.38	0.33	3.63

Table S1. Pore Structure Parameters of prepared samples calculated from N_2 adsorption isotherms

^aSpecific surface area (S_{BET}) calculated from the BET method. ^bMicropore specific surface area (S_{micro}) and ^cspecific external surface area (S_{ext}) calculated from the N₂ adsorption data. ^dTotal pore volume (V_{total}). ^eMicropore volume (V_{micro}) calculated by applying the Dubinin-Radushkevich (D-R) method. ^fMesopore volume (V_{meso}) calculated by the difference between total pore volume (V_{total}) and micropore volume (V_{micro}). ^gAverage pore diameter (D_{aver}).

Electrode Materials	S _{BET} (m²/g)	Specific capacitance (F/g)	Electrolyte	Cell configuration	Ref.
Paraus graphitis hambas sarban	1732.0	222.0 (0.5 A g ⁻¹)	6 M KOH	3E	[2]
Porous graphine bandoo carbon		48.1 (0.2 A g ⁻¹)	PVA-KOH	2E	[3]
LS-CNF-PEDOT paper	-	230 (0.5 A g ⁻¹)	0.1 M HClO ₄ in	3E	[14]
Lignosulfonate derived hierarchical porous carbons	903.0	247.0 (0.05 A g ⁻¹)	7 М КОН	2E	[17]
Amorphous microporous carbon	1352.0	61.1 (0.5 A g ⁻¹)	6 M KOH	2E	[19]
Nitrogen-containing hierarchical porous carbon spheres	1255	276 (0.1A g ⁻¹)	7 М КОН	3E	[27]
Functional-Group modification of kraft lignin/activated carbon	-	390 (0.5 A g ⁻¹)	$1 \text{ M H}_2 \text{SO}_4$	3E	[33]
Cross-linked N-doped carbon nanofiber	582.0	223.8 (0.5 A g ⁻¹)	$1 \text{ M H}_2 \text{SO}_4$	3E	[61]
network		53.8 (0.25A g ⁻¹)	1 M H ₂ SO ₄	2E	
Biomass based hierarchically porous	1984.0	225 (0.2A g ⁻¹)	6 M KOH	3E	[62]
hollow carbon nanospheres		40.0 (0.5A g ⁻¹)	6 M KOH	2E	[02]
3D nanostructure	1320.0	274.0 (1A g ⁻¹)	6 M KOH	3E	[63]
pectin biopolymer		234.0 (1A g ⁻¹)	6 M KOH- 1 M Na ₂ SO ₄	2E	
Nanoporous activated biocarbons	1968.0	223.0 (0.1 A g ⁻¹)	6 M KOH	2E	[65]
Nanoporous activated biocarbons		351.0 (0.1 A g-1)	6 M KOH	3E	[02]
Partially graphitized ginkgo-based activated carbon	1775.0	178.0 (0.4 Ag ⁻¹)	6 M KOH	3E	[66]
Lignin-derived carbon nanosheets	855.0	281.0 (0.5A g ⁻¹)	$1 \text{ M H}_2 \text{SO}_4$	3E	[67]
Graphene hydrogel films	414.0	186.0 (1A g ⁻¹)	H ₂ SO ₄ -PVA	2E	[68]
ARS/PGLS-1	1727.7	476.5 (0.5A g ⁻¹)	6 M KOH	3E	This work

Electrode Materials	Electrolyte	Energy density (Wh/kg)	Power density (W/kg)	Ref.
CNF-PEDOT-ARS	HEC/HClO ₄ /ARS	2.52	1805.0	[2]
Porous graphitic bamboo carbons	PVA/KOH	6.68	100.2	[3]
Lignosulfonate derived porous carbons	КОН	7.02	301.20	[17]
Semi-graphitized microporous carbons	КОН	7.40	151.40	[19]
Nanoporous activated biocarbons	КОН	1.60	10000.00	[60]
Cross-linked N-doped nanofiber network	PVA/H ₃ PO ₄	5.60	3000.00	[61]
Biomass based hierarchically porous carbon	КОН	5.60	1000.00	[62]
3D nanostructure	КОН	7.90	494.00	[63]
Pyrolyzed activated carbons	Na ₂ SO ₄	6.50	500.00	[64]
Graphene hydrogel films	PVA/H ₂ SO ₄	4.50	5000.00	[68]
ARS/PGLS-1	PVA/KOH/ARS	9.45	100.06	This work

Table S2. Specific capacitance of biomass activated carbon reported in the literature**Table S3.** Comparison of various carbonaceous electrode based supercapacitors inaqueous electrolyte system