Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene

nanosheets for use as high-efficiency electrocatalysts toward the

methanol oxidation reaction

Cuizhen Yang^a, Quanguo Jiang^a, Huan Liu^a, Lu Yang^a, Haiyan He^a, Huajie Huang^a,* and Weihua Li^b*

^aCollege of Mechanics and Materials, Hohai University, Nanjing 210098, China ^bCollege of Chemical Engineering and Technology, Sun Yat-sen University, Tangjiawan, Zhuhai, 519082, China

E-mail: huanghuajie@hhu.edu.cn or liweihua3@mail.sysu.edu.cn

Supplementary Results

Fig. S1 Representative SEM images of the bulk Ti₃AlC₂ powder.

Fig. S2 Representative SEM images of the exfoliated $Ti_3C_2T_x$ nanosheets.

Fig. S3 Representative TEM images of the exfoliated $Ti_3C_2T_x$ nanosheets.

Fig. S4 (a) AFM image of the exfoliated $Ti_3C_2T_x$ nanosheets and (b) the corresponding thickness analysis along the white lines in (a) discloses that the uniform thickness of the $Ti_3C_2T_x$ nanosheets is about 4.0 nm.

Fig. S5 (a) The XRD patterns of the Ti_3AlC_2 powder and $Ti_3C_2T_x$ nanosheets; (b) The digital photographs of $Ti_3C_2T_x$ solution showing the Tyndall scattering effect.

Fig. S6 The Tyndall effect confirming the colloidal nature of the PVP-functionalized

 $Ti_3C_2T_x$ solution.

Fig. S7 TEM images of the Pt-on-Pd/Ti₃C₂T_x hybrid with different magnifications, implying a uniform distribution of Pt-on-Pd nanoflowers on the $Ti_3C_2T_x$ nanosheets.

Fig. S8 (a) TEM image of the Pt-on-Pd/Ti₃C₂T_x hybrid and the corresponding elemental mapping images of (b) C, (c) Ti, (d) O, (e) Pd and (f) Pt elements.

Fig. S9 TEM images of intermediate products extracted from the reaction mixture of Pt-on-Pd bimetallic nanodendrite/ $Ti_3C_2T_x$ hybrids at different reaction times : (a) 0 h; (b)1 h; (c) 3 h.

Fig. S10 EDX spectrum of the Pt-on-Pd/Ti₃C₂T_x samples confirms the co-existence of C, O, Ti, Pd and Pt components in the material. The Cu peaks were also observable because the sample was held on a Cu grid.

Fig. S11 The CV curves of the Pt-on-Pd/Ti $_3C_2T_x$ catalyst with different scan rates.

Fig. S12 The stability behaviors of Pt-on-Pd/Ti₃C₂T_x and Pt/C catalysts toward methanol oxidation, revealing the better cycling stability of Pt-on-Pd/Ti₃C₂T_x catalysts.

Fig. S13 Typical (A) SEM and (B) TEM images of the Pt-on-Pd/Ti $_3C_2T_x$

nanoarchitecture after the long-term chronoamperometric test.

Fig. S14 CO stripping voltammograms for the Pt-on-Pd/Ti₃C₂T_x samples Pt/Ti₃C₂T_x,

Pt/CNT, Pt/RGO, and Pt/C catalysts tested in 0.5 M H₂SO₄ solution.

Fig. S15 AC impedance spectrum of the Pt-on-Pd/Ti₃C₂T_x electrode and the corresponding fitting curve. The inset is the equivalent circuit: R_s and R_{ct} represent the resistances for electrolyte and catalyst, respectively, Q_{dl} is a constant phase element, W represents semiinfinite diffusion at the electrolyte/electrode interface, R_f and C_f are the resistance and capacitance for the Nafion-carbon film, respectively.

Electrode	ECSA (m² g⁻¹)	Mass activity (mA mg ⁻¹)	Specific activity (mA cm ⁻²)	
$Pt-on-Pd/Ti_3C_2T_x$	157.3	1461.7	0.93	
Pt-on-Pd/C	67.9	325.7	0.48	
$Pt/Ti_3C_2T_x$	31.9	215.0	0.67	
Pt/RGO	27.6	313.3	0.72	
Pt/CNT	27.1	173.0	0.64	
Pt/C	23.1	106.0	0.46	

Table S1. Compiled study comparing ECSA and CV results for different catalysts.

Table S2. Comparison of methanol oxidation behavior on the Pt-on-Pd/Ti $_3C_2T_x$

Catalyst	ECSA	Mass activity	Scan rate		Def
	(m² g-1)	(mA mg ⁻¹)	(mV s ⁻¹)	Electrolyte	Ket.
Pt-on-Pd/Ti ₃ C ₂ T _x	157.3	1461.7	50	0.5 M H ₂ SO ₄ +	This work
				1 M CH ₃ OH	
AuPtCu nanowires	N.A.	~500.0	50	0.1 M HClO ₄ +	S1
				$1 \text{ M CH}_3 \text{OH}$	
FePtPd nanowires		488.7	50	0.1 M HClO ₄ +	S2
	N.A.			0.2 M CH ₃ OH	
PtPd/graphene	01 C	647 0	50	0.5 M H ₂ SO ₄ +	S3
	81.0	047.2		1 M CH ₃ OH	
Pt/N-doped G	N.A.	~400.0	200	0.5 M H ₂ SO ₄	S4
				+1MCH ₃ OH	
Pt/N-doped G	64.6	~390.0	20	1 M H ₂ SO ₄ +	S5
nanoribbon	04.0			2 M CH ₃ OH	
Pt/imidazolium-salt ionic liquid/CNT	67.6	`410.0	50	0.5 M H ₂ SO ₄ +	S6
				0.5 M H₃OH	
Pt/[BMIM]BF ₄ /CNT	N.A	155.0	50	0.5 M H ₂ SO ₄ +	S7
				1 M CH ₃ OH	
Pt/mesoporous carbon	N.A.	~450	20	0.5 M H ₂ SO ₄ +	S8
				1 M CH ₃ OH	
Pt/macroporous carbon	N.A.	81.6	50	0.5 M H ₂ SO ₄ +	S9
				0.5 M CH ₃ OH	
Pt/3D MoS ₂ -G	62.3	~01 0	10	1 M H ₂ SO ₄ +	S10
		51.0		2 M CH ₃ OH	

hybrids and various Pt-based electrocatalysts.

Reference

- [S1] W. Hong, J. Wang, E. Wang, *Small* 2014, **10**, 3262.
- [S2] S. Guo, S. Zhang, X. Sun, S. Sun, J. Am. Chem. Soc. 2011, 133, 15354.
- [S3] Guo, S.; Dong, S.; Wang, E., Acs Nano 2010, 40, 547.
- [S4] B. Xiong, Y. Zhou, Y. Zhao, J. Wang, X. Chen, R. O'Hayre, Z. Shao, *Carbon* 2013, 52, 181.
- [S5] H. Huang, G. Ye, S. Yang, H. Fei, C. S. Tiwary, Y. Gong, R. Vajtai, J. M. Tour, X.
 Wang, P. M. Ajayan, *J. Mater. Chem. A* 2015, **3**, 19696.
- [S6] S. Guo, S. Dong, E. Wang, *Adv. Mater.* 2010, **22**, 1269.
- [S7] H. Chu, Y. Shen, L. Lin, X. Qin, G. Feng, Z. Lin, J. Wang, H. Liu, Y. Li, Adv. Funct.
- Mater. 2010, 20, 3747.
- [S8] H. Jiang, T. Zhao, C. Li, J. Ma, *Chem Commun* 2011, **47**, 8590.
- [S9] X. Bo, L. Guo, *Electrochim. Acta* 2013, **90**, 283.
- [S10] Z. Gao, M. Li, J. Wang, J. Zhu, X. Zhao, H. Huang, J. Zhang, Y. Wu, Y. Fu, X.Wang, *Carbon* 2018, **139**, 369.