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Fig. S1. The high-resolution V2p XPS spectra of a) KVO-H and b) KVO.
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Fig. S2. XRD patterns of the as-prepared KVO-H and the samples annealed at 250, 300, 400, 

and 500 ˚C, respectively. The standard XRD pattern of monoclinic K0.486V2O5 (JCPDF No. 

86-0347) is also presented. 
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Fig. S3. The DSC profile of KVO-H.
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Fig. S4. SEM image of KVO-H.
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Fig. S5. a) SEM, b) TEM, and c) HRTEM images of KVO. d) Lattice spacing of the (001) 

plane for KVO measured from the HRTEM image shown in (c).
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Fig. S6. N2 adsorption−desorption isotherms and the Brunauer−Emmett−Teller (BET) surface 

areas of a) KVO-H and b) KVO. Barrett−Joyner−Halenda (BJH) pore areas of (c) KVO-H 

and (d) KVO.
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Fig. S7. Charge−discharge curves of KVO-H and the samples annealed at 250, 300, 400, and 

500 ˚C, respectively. The specific current 20 mA g−1 was used for all the tests.
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Fig. S8. Electrochemical performance of the full cell. a) Charge–discharge curves of KVO-H 

and commercial graphite at 20 mA g-1. b) Charge–discharge curves of the full cell at 20 and 

100 mA g-1. c) Cycling performance of the full cell at 100 mA g-1 with the initial 11 cycles 

tested at 20 mA g-1.
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Fig. S9. Ex-situ XRD results of (a) the KVO electrode and (b) the KVO-H electrode before 

and after 50 cycles. The baselines of all XRD results are fixed corresponding to the diffraction 

signals of the Al current collector at 2 of 65.1° and 78.2°, which are marked with asterisk.
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Fig. S10. Ex-situ TEM characterization of a, b) KVO and c, d) KVO-H after 1 cycle and 10 

cycles, respectively. The insets are the corresponding SAED patterns. The fractures in Fig. 

S10a are marked by the red dashed squares.
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Fig. S11. Characterization of the amorphous K0.5V2O5. a) XRD pattern, b) HRTEM image and 

the corresponding SAED image, c) CV profile performed at 0.1 mV s-1, d) charge−discharge 

curves at the specific current of 20 mA g-1.
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Fig. S12. Ex-situ SEM characterization of the KVO electrode: a) before charge-discharge, b) 

after 1 charge-discharge cycle, and c) after 50 charge-discharge cycles, respectively; Ex-situ 

SEM characterization of the KVO-H electrode: c) before charge-discharge, d) after 1 charge-

discharge cycle, and e) after 50 charge-discharge cycles, respectively.
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Fig. S13. Nyquist plots of a) the KVO and b) KVO-H electrodes after cycling. All EIS tests 

were performed at the fully charged state (4.5 V vs. K+/K).
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Fig. S14. CV profiles of a) the KVO and b) KVO-H electrodes at different scan rates. The 

dashed lines in the plots are used as a guide for eyes to show the variations of the current 

peaks with scan rates. 
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Fig. S15. a) V K-edge XANES spectra for KVO at the fully charged and discharged states. b) 

The enlarged areas marked by the red dashed square in (a).
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Fig. S16. a) Quasi-equilibrium potential and transient potential profiles vs. specific capacity 

for K-ions intercalation/deintercalation in the KVO obtained from GITT. b) Reaction 

resistance for K-ions intercalation into the KVO. c) Reaction resistance for K-ion 

deintercalation from the KVO. d) The calculated apparent chemical diffusion coefficient of 

potassium (DK) in the KVO vs. specific capacity.
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Fig. S17. Structures of a) -V2O5H2O, b) 1-V2O5, and c) 1-V2O50.5H2O.
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Fig. S18. Structures of a) -K0.5V2O5, b) 2-V2O5, and c) 2-V2O50.5H2O.
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Fig. S19. Structures of a) 2-V2O50.5H2O, b) 2-K0.25V2O50.5H2O, c) 2-K0.50V2O50.5H2O,  

d) 2-K0.75V2O50.5H2O,  and e) 2-K1.00V2O50.5H2O.
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Fig. S20. Comparison of the XRD result of the KVO electrode at the fully charged state after 

the first charge process with the expected diffraction response of 1-V2O5 and 2-V2O5 

obtained from the DFT calculations. The diffraction signals of Al current collector are also 

marked in the plot.
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Fig. S21. Structures of a) 1-V2O5, b) 1-K0.25V2O5, c) 1-K0.50V2O5, d) 1-K0.75V2O5, and e) 

1-K1.00V2O5.
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Fig. S22. Structures of a) 2-V2O5, b) 2-K0.25V2O5, c) 2-K0.50V2O5, d) 2-K0.75V2O5, and e) 

2-K1.00V2O5.



24

Fig. S23. The calculated (a and b) lattice parameters and (c) unit cell volumes of 1-KxV2O5 (0 

≤ x ≤ 1) at various K-ion contents. (d) The difference of the unit cell volume  between 1-

KxV2O5 (0 ≤ x ≤ 1) and 1-V2O5.
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Fig. S24. The calculated (a and b) lattice parameters and (c) unit cell volumes of 2-KxV2O5 (0 

≤ x ≤ 1) at various K-ion contents. (d) The difference of the unit cell volume between 2-

KxV2O5 (0 ≤ x ≤ 1) and  2-V2O5.
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Fig. S25. The unit cell volume difference between 1-KxV2O5 and 2-KxV2O5 (0 ≤ x ≤ 1) in 

comparison with the unit cell volume of 2-KxV2O5 (0 ≤ x ≤ 1).


