Supporting Information

A scalable strategy toward compliant tandem yarn-shaped supercapacitors with high voltage output

Juan Zhang^a, Qingli Xu^a, Xiangyu Qian^a, Xinhou Wang^{ab*}, Kun Zhang^{a*}

^a Key Laboratory of Textile Science & Technology (Donghua University), Ministry of

Education, College of Textiles, Donghua University, Shanghai 201620, China

^b College of Mechanical Engineering, Donghua University, Shanghai 201620, China

E-mail address: kun.zhang@dhu.edu.cn (Kun Zhang); xhwang@dhu.edu.cn (Xinhou

Wang)

Contents

Supplementary Note 1. Calculation of contact resistance

Supplementary Figure 1. Preparation of MnO₂/GO nanohybrid slurry

Supplementary Figure 2. A typical SEM image (a) and TEM image (b) of GO

Supplementary Figure 3. TGA curves of pure MnO₂ and all MnO₂/rGO composites.

Supplementary Figure 4. Cross-sectional SEM images of rGO electrode (a) and

 $MnO_2/rGO_{(1:1)}$ electrode (b)

Supplementary Figure 5. Diameters of YSSC electrodes versus mass loading of MnO₂/rGO_(1:1)

Supplementary Figure 6. Stress-strain curves of MnO₂/rGO_(1:1) based T-YSSCs **Supplementary Figure 7.** (a) Photograph of ESF-A bending at 180°. (b) Photograph of ESF-B winding at 360°. **Supplementary Figure 8.** CV curves of YSSC and devices consisting of 3, 5, 10 YSSCs connected in parallel, which are measured at a scan rate of 5 mV/s.

Supplementary Table 1. Total resistance for T-YSSCs and MI-YSSCs

Supplementary Note 1

Calculation process of contact resistance. In theory, the total resistance R_n for T-YSSCs consisting of different unit numbers (n) are composed of different components:

$$R_{I} = R_{i} + R_{ct}$$

$$R_{2} = 2R_{i} + R_{ct} + R_{lt}$$

$$\dots$$

$$R_{n} = nR_{i} + R_{ct} + (n-1)R_{lt}$$

$$\Delta R_{\text{T-YSSCs}} = R_{n} - R_{I} = (n-1)(R_{i} + R_{lt}) \qquad (1)$$

Where R_i is internal resistance for single YSSC, R_{ct} is contact resistance between MnO₂/rGO_(1:1) electrode and metal (current collector or metal wire) and R_{lt} is the resistance generated from T-YSSCs interconnection. As the unit number increases, R_{ct} will not increase since no more contact between MnO₂/rGO_(1:1) electrode and metal generates.

Correspondingly, R_n for MI-YSSCs consists of following components:

$$R_{l} = R_{i} + R_{ct}$$

$$R_{2} = 2(R_{i} + R_{ct}) + R_{lt}$$
...
$$R_{n} = n(R_{i} + R_{ct}) + (n-1)R_{lt}$$

$$\Delta R_{\text{MI-YSSCs}} = R_{n} - R_{l} = (n-1)(R_{i} + R_{ct} + R_{lt})$$
(2)

 R_{ct} of MI-YSSCs will increase with the unit number due to metal-wire connections. Therefore, the R_{ct} value will be calculated from this formula:

$$\Delta R_{\text{MI-YSSCs}} - \Delta R_{\text{T-YSSCs}} = (n-1) R_{ct}$$
(3)

Figure S1. Preparation process of MnO₂/GO nanohybrid slurry.

Figure S2. (a) A typical SEM image of GO. (b) A typical TEM image of GO.

Figure S3. TGA curves of pure MnO_2 and all MnO_2/rGO composites.

Figure S4. (a) Cross-sectional SEM image of rGO electrode. (b) Cross-sectional SEM image of $MnO_2/rGO_{(1:1)}$ electrode.

Figure S5. Plots of diameter of $MnO_2/rGO_{(1:1)}$ electrode versus mass loading of active

material (5.8-34.3 mg/m).

Figure S6. Stress-strain curves of $MnO_2/rGO_{(1:1)}$ based T-YSSCs.

Figure S7. (a) Photograph of ESF-A bending at 180°. (b) Photograph of ESF-B

winding at 360°.

Figure S8. CV curves of YSSC and devices consisting of 3, 5, 10 YSSCs connected in parallel, which are measured at a scan rate of 5 mV/s.

Unit number	1	3	5	10
R_n for T-YSSCs (k Ω)	6.7	21.2	33.9	88.5
R_n for MI-YSSCs (k Ω)	6.8	32.2	54.6	122.8

Table S1. Total resistance for T-YSSCs and MI-YSSCs.