Supporting Information

N Coupling with S-Coordinated Ru Nanoclusters for Highly Efficient Hydrogen Evolution in Alkaline Media

Cheng-Fei Li,^a Jia-Wei Zhao,^a Ling-Jie Xie,^a Yu Wang,^a Hai-Bo Tang,^a Li-Rong Zheng^{b,*} and Gao-Ren Li^{a,*}

^aMOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China

^bBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049,

China

E-mail: zhenglr@ihep.ac.cn; ligaoren@mail.sysu.edu.cn

Fig. S1 FT-IR spectra of PANI-APS (polyaniline-ammonia persulfate) and APS (ammonia persulfate) for reference.

Obviously, apart from these peaks at 1566, 1493, 1289, 1244, 1107 and 3434 cm⁻¹ ascribed to C–C stretching of the quinonoid ring and benzenoid ring, C–N stretching of secondary aromatic amines, C–H bindings of the benzenoid ring and the quinonoid ring and N–H stretching in FT-IR spectrum of PANI-

APS, respectively, other partial bands are consistent with APS, indicating existence of the APS in the framework of PANI-APS.

Fig. S2 XRD patterns of Ru-S/N-C, Ru-S-C and Ru-N-C.

Fig. S3 a) and b) TEM images of Ru-N-C with different magnifications; c) and d) TEM images of Ru-S-C with different magnifications.

Fig. S4 The aberration-corrected HAADF-TEM of Ru-S/N-C. The Ru single-atoms were marked by the red circles.

Fig. S5 Theoretical models of Ru-N-C before (a) and after (b) structural optimization.

Fig. S6 Theoretical models of Ru-S-C before (a) and after (b) structural optimization.

Fig. S7 FTEXAFS fitting curves of the Ru-S/N-C at Ru K-edge.

Table 51. EXAM 5 multiple parameters at the Ru R edge for various samples							
Sample	Shell	N ^a	R (Å) ^b	σ^2 (Å ² ·10 ⁻³) °	$\Delta E_0 (eV)^d$	R factor (%)	
Ru-S/N-C	Ru-S	$\begin{array}{c} 1.2 \pm 0. \\ 4 \end{array}$	2.15±0.03	6.9±1.3	-7.3±0.8	0.7	
	Ru-Ru	$7.2 \pm 0.$ 6	2.68±0.01	5.5±1.0	5.5±1.5		

Table S1. EXAFS fitting parameters at the Ru K-edge for various samples

^{*a*} *N*: coordination numbers; ^{*b*} *R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. *SO*₂ were set as 0.815/0.823 for Ru-S/Ru-Ru, which were obtained from the experimental EXAFS fit of reference Ru powder/ RuS₂ by fixing CN as the known crystallographic value and was fixed to all the samples.

Fig. S8 The survey XPS pattern of Ru-S/N-C.

Fig. S9 UV-Vis diffuse reflectance spectra of Ru-S/N-C, Ru-N-C, and Ru-S-C.

Fig. S10 N_2 adsorption-desorption isotherms of Ru-S/N-C.

Fig. S11 Pore size distribution plot of Ru-S/N-C.

Fig. S12 The contact angle measurement of Ru-S/N-C.

Fig. S13 The contact angle measurement of Ru-S-C.

Fig. S14 The Raman spectra of Ru-S/N-C, Ru-N-C and Ru-S-C.

Fig. S15 a-e) cyclic voltammetry curves, and f) current densities at 0.818 V plotted against scan rates for Pt/C, Ru/C, Ru-S/N-C, Ru-S-C and Ru-N-C (Corresponding C_{dl}).

Fig. S16 HER performance comparisons of Ru-S/N-C with those of the reported catalysts.

Table S2. The comparison of the catalytic activity of HER on Ru-S/N-C with the recently reported catalysts in 1.0 M KOH media.

Catalysts	Overpotential (mV @10 mA cm ⁻²)	References	
Ru@Co–SAs/N–C	7	Nano Energy, 2019, 59, 472–480	
Ru/NG-750	8	ACS Appl. Mater. Interfacess, 2017, 9, 3785–3791	
Ru-S/N-C	10	This work	
NiCoMo/Ru-GN	11.4	J. Phys. Chem. C, 2018, 122, 17621– 17631	
Ru-NC-700	12	Nat. Commun., 2019, 10, 631	
Co-substituted Ru	13	Nat. Commun., 2018, 9, 4958	
Ru/MoS ₂ /CP	13	Chem. Commun., 2018, 54, 3343–3346	
Ru ₂ P/RGO	13	Chem. Commun., 2018, 54, 3343–3346	
Ru/C-300	14	J. Mater. Chem. A, 2018, 6, 14380–14386	
Ru/CN-800	14	ACS Sustainable Chem. Eng., 2018, 6, 11487–11492	
Ru/3DNPC-500	15	ACS Sustainable Chem. Eng., 2019, 7, 1178–1184	
Ru/N-BP2000	15	ChemCatChem 2019, 11, 4327-4333	
Ru@C ₂ N	17	Nat. Nanotechnol., 2017, 12, 441-446	
RuP (L-RP)	18	Adv. Mater., 30, 2018, 1800047	
0.27-RuO ₂ @C	20	Nano Energy, 2019, 55, 49–58	
v-Pt ₂₉ Pd ₃ Ru ₆₂ Te ₆ AS	20	Nano Energy 2019, 61, 346–351	
Ru/NC	21	J. Mater. Chem. A, 2017, 5, 25314–25318	
Ru@GnP	22	Adv. Mater., 30, 2018, 1803676	
4H/fcc Ru NTs	23	Small, 14, 2018,1801090	
Ru/C	24	Adv. Energy Mater., 8, 2018, 1801698	
PP-Ru/RuO ₂ -GC	25	ACS Catal., 2018, 8, 11094–11102	
s-RuS ₂ /S-rGO	25	ACS Appl. Mater. Interfaces, 2018, 10, 34098-34107	

Ru@NC	26	Angew. Chem. Int. Ed., 2018, 130, 5950– 5954
Cu-doped Ru- RuO ₂ /C	28	Small, 2018, 14, 1803009
RuCo@NC	28	Nat. Commun., 2017, 8, 14969
Ru-MoO ₂	29	J. Mater. Chem. A, 2017, 5, 5475–5485
Pd@Ru NRs	30	ACS Appl. Mater. Interfaces, 10, 2018, 34147–34152
Ru-Ni@Ni ₂ P-HNRs	31	J. Am. Chem. Soc., 2018, 140, 2731– 2734
NiRu@N-C (S-2)	32	J. Mater. Chem., A 2018, 6, 1376–1381
Ru@CN	32	Energy Environ. Sci., 2018, 11, 800-806
Ru-NGC	37	Chem. Commun., 2019, 55, 965–968
CNx@Ru/MWCNT	39	ChemCatChem, 2019, 11, 1970–1976
Ru@NG-4	40	Sustain. Energy Fuels, 2017, 1, 1028–1033
Ru ₂ Ni ₂ SNs	40	Nano Energy, 2018, 47, 1–7
RuO ₂ /N–C	40	ACS Sustainable Chem. Eng., 2018, 6, 11529–11535
Ru ND/C	43.4	Chem. Commun., 2018, 54, 4613-4616
CoRu@NC	45	Nanotechnology, 29, 225403 (2018)
Ru ₂ P@PNC/CC-900	50	ACS Appl. Energy Mater., 2018, 1, 3143– 3150
Ni _{1.5} Co _{1.4} P@Ru	52	Chem. Commun. 2017, 53, 13153–13156
RuP ₂ @NPC	52	Angew. Chem., Int. Ed. 2017, 56, 11559– 11564
Sr ₂ RuO4	61	Nat. Commun., 2019, 10, 149
ah-RuO ₂ @C	63	Nano Energy, 2019, 55, 49–58
RuP _x @NPC	74	ChemSusChem, 2018, 11, 743–752
Cu _{2-x} S@Ru NPs	82	Small, 2017, 13, 1700052
RuP ₂ /CNT	82	Chemistry, 2019, 25, 8579-8584
RuO ₂ -NWs@g-CN	95	ACS Appl. Mater. Interfaces, 2016, 8, 28678–28688

Fig. S17 HER polarization plot of C-N/S in 1.0 M KOH.

Fig. S18 HER polarization plot of Ru-S/N-C with 10 mM KSCN in 1.0 M KOH, indicating that SCN ions strongly poison the active center of Ru-S/N-C catalyst.

Fig. S19 HER polarization plot of physically mixed Ru/C-S-N in 1.0 M KOH.

Fig. S20 Comparisons of specific activities of Pt/C, Ru/C, Ru-S/N-C, Ru-S-C and Ru-N-C.

Fig. S21 High-resolution image of Ru-S/N-C after cycling in 1.0 M KOH electrolyte.

Fig. S22 a) XPS survey spectra. High-resolution XPS spectra of b) Ru 3p, c) S 2p and d) N 1s for Ru-S/N-C after cycling.

Fig. S23 Tafel plots of Ru-S/N-C, Pt/C and Ru/C

Fig. S24 Nyquist plots for Ru-S/N-C, Pt/C and Ru/C.

Fig. S25 Theoretical calculated models of Ru/C, Ru/S-C and Ru-S/N-C.

Fig. S26 a-d) Side and top views of theoretical calculated models for Ru_{single atom}-S/N-C, Ru_{single atom}-N/N-C, Ru_{single atom}-S/S-C and Ru_{single atom}-S/S-C.

Fig. S27 ΔG_{H^*} calculated for hydrogen evolution reaction on various catalysts.