Supplementary Information

Effective stability enhancement in ZnO-based perovskite solar

cells by MACl modification

Chunyu Liu,^{ab} Wei Wu,^a Dezhong Zhang,^c Zhuowei Li,^a Guanhua Ren,^a Wenbin Han,^a Wenbin Guo*^a

^a State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China

^b College of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China

^c State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

Fig. S1 XPS spectra of ZnO and ZnO-MACl with different concentrations of MACl depicting the O 1s peaks.

Fig. S2 XPS spectra depicting the C 1s peaks.

Fig. S3 PL spectra of MAPbI₃ layers on ITO, ITO/ZnO and ITO/ZnO-MACl.

Fig. S4 AFM images of (a) ZnO and (b) ZnO-MACl with a high magnification.

Fig. S5 Thickness measurements of (a) ETLs and (b) ETL/perovskite layers.

Control Control Control Control Control	2
MAI	
мави	

Fig. S6 Thermal stability of perovskite layers on ZnO-MABr, ZnO-MAI and bare ZnO (control) with the molar concentration of 0.02 mmol/mL.

Fig. S7 Thermal stability of perovskite layers on ZnO-MABr and ZnO-MAI with different reaction time of 10, 20 and 30 min.

Fig. S8 Photographs of perovskite layer on (a) ZnO-KCl and (b) ZnO-CsCl heated at 100 °C for different times, and the molar concentrations of KCl and CsCl are 0.10, 0.15, 0.20 and 0.25 mmol/mL.

Fig. S9 Photographs of perovskite layers on ZnO/MACl heated at 100 °C for different times, and the modified MACl is not annealed but vacuum treated for different times before depositing perovskite layer.

Fig. S10 Cross-sectional SEM images of PSCs based on (a) ZnO and (b) ZnO-MACl layers.

Fig. S11 J-V characteristics of PSCs with MABr and MAI modification.

Fig. S12 *J-V* characteristics of ZnO-MACl-based PSCs with different molar concentrations of MACl.

Fig. S13 Long-term stability of inorganic CsPbI₂Br-based PSCs with ZnO-MACl layer stored in glove-box for 60 days.

Table S1. Photovoltaic parameters of PSCs with ZnO and ZnO-MACl measured by forward and reverse scans, including V_{oc} , J_{sc} , FF and PCE.

PSCs Devices		$V_{\rm oc}\left({ m V} ight)$	$J_{\rm sc}~({\rm mA~cm^{-2}})$	FF (%)	PCE (%)
ZnO	Reverse	1.083	20.76	73.6	16.55
	Forward	1.060	19.93	61.4	12.97
ZnO-MACl	Reverse	1.107	21.96	77.1	18.74
	Forward	1.097	21.64	75.3	17.88

 Table S2. Detailed photovoltaic parameters of ZnO-MACl-based PSCs with varied molar concentrations of MACl.

Concentrations (mmol/mL)	$V_{\rm oc}\left({ m v} ight)$	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
0.10	1.085	21.08	74.4	17.02
0.15	1.101	21.49	75.7	17.91
0.25	1.088	20.20	71.4	15.69
0.30	1.061	19.51	67.3	13.93