Electronic Supplementary Information

A novel sodium-ion supercabattery based on vacancy defective Ni-Co-

Mn ternary perovskite fluorides electrode materials

Tong Yan,^a Rui Ding,^{*a} Yongfa Huang,^a Danfeng Ying,^a Caini Tan,^a Yuxi Huang,^a Feng Yang,^a Xiujuan Sun,^a Ping Gao^a and Enhui Liu ^a

^{*a*}Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China

*E-mails: drm8122@163.com; drm8122@xtu.edu.cn

Table of contents

Experimental section	Synthesis of materials, characterizations, electrochemical measurements, and calculations for C_m , E_m , and P_m .	P 4
Fig. S1	XRD pattern of KMF(244)/rGO sample.	P 6
Fig. S2	SEM and TEM of KMF(244)/rGO samples.	P 7
Fig. S3	SEM selected area and EDS of KMF(244)/rGO samples.	P 8
Fig. S4	N_2 sorption isotherms, pore volumes, and pore size distributions of KMF(244)/rGO samples.	Р9
Fig. S5	CV plots for the first three cycles at 0.3 mV s ⁻¹ of KMF/rGO (811-118) electrodes.	P 10
Fig. S6	GCD curves for the first five cycles at 0.02 A g^{-1} of KMF/rGO (811-118) electrode.	P 11
Fig. S7	GCD curves at 0.02-2.0 A g ⁻¹ of KMF/rGO (811-118) electrode.	P 12
Fig. S8	Rate capability and coulombic efficiency at 0.02-2.0 A g ⁻¹ of KMF/rGO (811-118) electrodes.	P 13
Fig. 89	Cycling behavior at 0.5 A g ⁻¹ of KMF/rGO (811-118) electrode.	P 14
Fig. S10	Pseudocapacitive and diffusion-controlled contributions to charge storage in the KMF(244)/rGO electrode.	P 15
Fig. S 11	Ex-situ XPS for survey scans, C1s, and O1s in pristine and fully discharged/charged states of the KMF(244)/rGO electrode.	P 16
Fig. S12	XRD pattern, Specific capacity and GCD curves of rGO.	P 17
Fig. S13	Electrochemical performance of the AC electrode.	P 18
Fig. S14	Electrochemical performance of the NVPOF electrode.	P 19
Fig. S15	Electrochemical performance of the AC/NVPOF electrode.	P 20
Fig. S16	The voltage windows of KMF(244)/rGO//AC SICs, KMF(244)/rGO//NVPOF SIBs, and KMF(244)/rGO//AC/NVPOF SICBs.	P 21
Fig. S17	The performance of KMF(244)/rGO//AC SICs at 0-4.5 V.	P 22
Fig. S18	The performance of KMF(244)/rGO//NVPOF SIBs at 0-4.5 V.	P 23
Fig. S19	The performance of KMF(244)/rGO//AC/NVPOF SICBs at 0-4.5 V.	P 24
Table S1	Crystalline parameters for KNiF ₃ , KCoF ₃ , and KMnF ₃ .	P 25

Table S2	Charged specific capacity and cycling retention of the KMF/rGO (811- 118) electrodes.	P 26
Table S3	Crystalline parameters for the indicated new phases of the fully discharged/charged state XRD patterns.	P 27
Table S4	Charged specific capacity and cycling retention of the AC, NVPOF, and AC/NVPOF electrodes.	P 28
Table S5	The design of m ₊ /m. ratios for KMF(244)/rGO//AC SICs, KMF(244)/rGO//NVPOF SIBs, and KMF(244)/rGO//AC/NVPOF SICBs.	P 29
Table S6	Performance summary of the KMF(244)/rGO//AC SICs, KMF(244)/rGO//NVPOF SIBs, and KMF(244)/rGO//AC/NVPOF SICBs in this study.	P 30
Table S7	A comparison for the performance of the KMF(244)/rGO//AC/NVPOF SICBs in this study with some reported SIBs and SICs.	P 31
Table S8	Chemicals, reagents, and materials used in this study.	P 32
Table S9	The usage amounts of reagents of the KMF/rGO (811-118) samples.	P 33

Experimental

Synthesis of materials

The chemicals and reagents used in this study are all of the analytical/guaranteed reagents (AR/GR) and were used without further treatment (Table S8). A facile one-pot solvothermal method was applied to synthesize these samples. The synthetic procedure of KMF(244)/rGO (M=Ni, Co, Mn) sample is taken out as an example since the synthetic steps of eight other KMF/rGO samples are all the same except for the usage amounts of nickel, cobalt, and manganese salts, more details of the usage amounts of reagents can be seen in Table S9. Firstly, 60 mg graphene oxides (GO) were dispersed in 32 mL solvents of ethylene glycol (EG) with the ultrasonic treatment for 1 h, and then 0.4 mmol NiCl₂·6H₂O, 0.8 mmol CoCl₂·6H₂O, 0.8 mmol MnCl₂·4H₂O, 5 mmol KF·2H₂O, and 0.2 g PVP-K30 were further dissolved into the solvents; Secondly, the mixture was magnetically stirred and dispersed thoroughly in an ultrasonic bath at 100 W for 30 min; Thirdly, the mixture was transferred into a 50 mL Teflon-lined stainless steel autoclave, which was heated at 180 °C for 12 h in an electric oven, and then cooled down to room temperature; Next, the yielded precipitates were centrifuged and washed with absolute alcohol for several times; Finally, the precipitates were dried at 90 °C for 12 h to obtain the final product. The synthetic of rGO is the same as the KMF(244)/rGO (M=Ni, Co, Mn) sample except for without adding nickel, cobalt, and manganese salts.

Characterizations

The phases and crystallinity properties are determined by X-ray diffraction (XRD). The surface chemical compositions and electronic structures are checked by X-ray photoelectron spectra (XPS). The morphology and size of particles are analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystalline microstructures are resolved by the high-resolution TEM (HRTEM) and selected area electron diffraction (SAED). The element composition and distribution are measured by inductively coupled plasma-optical emission spectrometer (ICP-OES), X-ray energy dispersive spectra (EDS), and mapping. The specific surface area, pore volume, and size distribution are examined by nitrogen isothermal sorption with Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The content of reduced graphene oxide is analyzed by Thermogravimetric analysis (TGA) and differential Thermogravimetric analysis (DTG).

Electrochemical measurements

The following is the procedure of preparing electrodes: i) Mixing 70 wt.% active materials (as-synthesized KMF/rGO (811-118), rGO or commercial AC, NVPOF, and AC/NVPOF ($m_{AC}:m_{NVPOF}=1:1$)), 20 wt.% conductive agent of superconductive carbon black and 10 wt.% binders of polyvinylidene fluoride (PVDF) evenly with N-methyl-2-pyrrolidone (NMP)); ii) Casting the mixture onto the current collectors, where Cu foil and carbon-coated Al foil were used for anodes and cathodes respectively; iii) Drying them in a vacuum oven at 110 °C for 12 h; iv) Cutting them into disks with a diameter of 12 mm with the active materials mass loading of about 1.0-3.0 mg cm⁻². In the current work, half-cells were fabricated using the CR-2032 coin cells with active materials as working electrode (WE), a Na plate as both counter and reference electrodes (CE/RE), glass fiber (GF) as the separator, and 0.85 M

 $NaPF_6$ dissolved in the mixed solvents of ethylene carbonate (EC), dimethyl carbonate (DEC) and ethyl methyl carbonate (EMC) (1:1:1 in volume) with 5% fluoroethylene carbonate (FEC) additives (MJS) as the electrolytes. Tests for the different energy storage devices (SICs, SIBs, and SICBs) were conducted via full-cells with certain mass ratios of active materials of anode and cathode (**Table S5**). All cell assemblies were performed in a highly pure Ar-filled dry glovebox (MIKROUNA, O2 and H2O<0.1 ppm), and all tests were carried out at room temperature (about 25 °C) (The more detailed information of the abovementioned materials, chemicals and reagents can be seen in **Table S8**). The test procedure of KMF/rGO (811-118) anode: we used the same cell to test the specific capacity (rate performance) at 0.02-2-0.02 A g⁻¹ and cycle performance at 0.5 A g-1 for 500 cycles (before testing the cycle performance the cell was laid aside for 3 hours) of KMF/rGO (811-118) anode materials. The test procedure of NVPOF, AC and AC/NVPOF cathode half cell and SICs, SIBs and SICBs full cell: firstly, we use one fresh cell to test rate performance, and then we use another fresh cell to test cycle performance. The charge-balance $(Q_{+}=Q_{-})$ as shown in equation (1) was used to calculate the mass ratios of active materials of cathode and anode. The specific capacity (C_m , mAh g⁻¹), energy density ($E_{m,1}$, Wh kg⁻¹) for SICs, energy density (E_{m,2}, Wh kg⁻¹) for SIBs and SICBs, and power density (P_m, kW kg⁻¹) of different energy storage devices were calculated according to the equations (2)-(5). $m_{+}/m_{-}=Q_{m_{-}}/Q_{m_{+}}$ (1) $C_{\rm m} = Q_{\rm m}/3.6 = It/3.6m$ (2)

$$E_{\rm m,1} = (C_{\rm m} \Delta V)/2 \tag{3}$$

$$E_{m,2} = \int_0^{C_m} V dC_m \tag{4}$$

$$P_{\rm m} = 3.6 E_{\rm m} / t_{\rm d}$$
 (5)

Where *m*, Q_m , *V*, *I*, and t_d refer to the mass of active materials (g, for half cells, it means the mass of active materials of anode or cathode; for full-cells, it means the total masses of active materials of anode and cathode), specific charge or discharge quantity (C g⁻¹, for the anode, it means the charge quantity; for cathode and full-cells, it refers to the discharge quantity), voltage window (V), current (A) and discharging time (s), respectively.

Fig. S1 XRD pattern of KMF(244)/rGO sample.

Fig. S2 SEM (a) and TEM (b) of KMF(244)/rGO samples.

Fig. S3 SEM selected area (a) and EDS (b) of KMF(244)/rGO samples.

Fig. S4 N_2 sorption isotherms (a), pore volumes (b), and pore size distributions (c) of KMF(244)/rGO samples.

Fig. S5 CV plots for the first three cycles at 0.3 mV s⁻¹ of KMF/rGO (811-118) electrodes.

Fig. S6 GCD curves for the first five cycles at 0.02 A g^{-1} of KMF/rGO (811-118) electrode.

Fig. S7 GCD curves at 0.02-2.0 A g⁻¹ of KMF/rGO (811-118) electrode.

Fig. S8 Rate capability and coulombic efficiency at 0.02-2.0 A g⁻¹ of KMF/rGO (811-118) electrodes.

Fig. S9 Cycling behavior at 0.5 A g^{-1} of KMF/rGO (811-118) electrodes.

Fig. S10 Pseudocapacitive and diffusion-controlled contributions to charge storage in the KMF(244)/rGO electrode (the shaded region is the identified pseudocapacitive contribution).

Fig. S11 Ex-situ XPS for survey scans (a), C1s (b), and O1s (c) in pristine and fully discharged/charged states of the KMF(244)/rGO electrode.

Fig. S12 XRD pattern (a), Specific capacity (b) and GCD curves (c) of rGO.

Fig. S13 Electrochemical performance of the AC electrode: CV plots for the first three cycles at 0.3 mV s⁻¹ (a); GCD curves at 0.1 A g⁻¹ (b); GCD curves at 0.1-8.0 A g⁻¹ (c); rate performance at 0.1-8.0 A g⁻¹ (d); cycling behavior at 5 A g⁻¹ (e).

Fig. S14 Electrochemical performance of the NVPOF electrode: CV plots for the first three cycles at 0.3 mV s⁻¹ (a); GCD curves at 0.1 A g⁻¹ (b); GCD curves at 0.1-8.0 A g⁻¹ (c); rate performance at 0.1-8.0 A g⁻¹ (d); cycling behavior at 5 A g⁻¹ (e).

Fig. S15 Electrochemical performance of the AC/NVPOF electrode: CV plots for the first three cycles at 0.3 mV s⁻¹ (a); GCD curves at 0.1 A g⁻¹ (b); GCD curves at 0.1-8.0 A g⁻¹ (c); rate performance at 0.1-8.0 A g⁻¹ (d); cycling behavior at 5 A g⁻¹ (e).

Fig. S16 Voltage windows of KMF(244)/rGO//AC SICs (a), KMF(244)/rGO//NVPOF SIBs (b), and KMF(244)/rGO//AC/NVPOF SICBs (c).

Fig. S17 CV plots at 10-160 mV s⁻¹ (a), GCD curves at 0.5-16 A g⁻¹ (b), rate capability at 0.5-16 A g⁻¹ (c), and cycling behavior at 5 A g⁻¹ (d) of the KMF(244)/rGO//AC SICs under 0-4.5 V.

Fig. S18 CV plots at 10-160 mV s⁻¹ (a), GCD curves at 0.5-16 A g⁻¹ (b), rate capability at 0.5-16 A g⁻¹ (c), and cycling behavior at 5 A g⁻¹ (d) of the KMF(244)/rGO//NVPOF SIBs under 0-4.5 V.

Fig. S19 CV plots at 10-160 mV s⁻¹ (a), GCD curves at 0.5-16 A g⁻¹ (b), rate capability at 0.5-16 A g⁻¹ (c), and cycling behavior at 5 A g⁻¹ (d) of the KMF(244)/rGO//AC/NVPOF SICBs under 0-4.5 V.

Sample	ICSD-PDF	Crystal system	Space group	Cell (a×b×c)/Å ³
KNiF ₃	21-1002	Cubic	Pm-3m	4.0127×4.0127×4.0127
KCoF ₃	18-1006	Cubic	Pm-3m	4.0708×4.0708×4.0708
KMnF ₃	17-0116	Cubic	Pm-3m	4.1890×4.1890×4.1890

Table S1 Crystalline parameters for KNiF3, KCoF3, and KMnF3.

VME/CO		Specific capacity / mAh g ⁻¹							
KMF/FGU	0.02	0.05	0.1	0.2	0.5	1.0	2.0	(500 cycles/0 5 A σ^{-1})	
samples	$(A g^{-1})$	$(A g^{-1})$	$(A g^{-1})$	(A g ⁻¹)	$(A g^{-1})$	(A g ⁻¹)	$(A g^{-1})$	(300 Cycles/0.3 A g)	
811	228	164	132	105	79	58	42	77%	
622	237	166	129	103	75	57	41	65%	
424	223	168	131	104	73	54	37	65%	
181	138	115	99	85	66	53	41	77%	
262	156	124	104	87	68	54	41	72%	
442	215	168	132	103	74	56	40	68%	
244	211	172	147	118	90	71	54	73%	
226	221	172	137	110	81	60	42	77%	
118	136	118	102	86	67	54	41	77%	

Table S2 Charged specific capacity and cycling retention of the KMF/rGO (811-118) electrodes.

Sampla	ICSD PDF	Crystal	Space group	Call $(axbxa)/\lambda^3$
Sample	ICSD-I DI	system	Space group	Cell (a×b×C)/A
Ni	97-064-6091	Cubic	Fm-3m	3.5664×3.5664×3.5664
Со	97-005-2934	Cubic	Fm-3m	3.5688×3.5688×3.5688
Mn	97-016-3414	Cubic	P4-32	6.2747×6.2747×6.2747
KF	01-078-0657	Cubic	Pm-3m	3.0600×3.0600×3.0600
NaF	01-071-3747	Cubic	Fm-3m	4.6500×4.6500×4.6500
NiF ₂	01-071-4806	Tetragonal	P4 ₂ -mnm	4.6500×4.6500×3.0800
CoF ₂	01-070-4977	Tetragonal	P4 ₂ -mnm	4.6956×4.6956×3.1793
MnF ₂	01-083-2419	Tetragonal	P4 ₂ -mnm	4.8413×4.8413×3.3002
NaNiF ₃	04-010-7381	Orthorhombic	Pb-nm	5.3660×5.5300×7.6950
NaCoF ₃	01-072-0292	Orthorhombic	Pn-ma	5.6070×7.7900×5.4280
NaMnF ₃	04-002-6582	Orthorhombic	Pn-ma	5.6660×7.8280×5.4020

Table S3 Crystalline parameters for the indicated new phases of the fully discharged/charged stateXRD patterns.

	Specific capacity / mAh g ⁻¹							
Current 0.1 0.2 0.5 1.0 2.0 4.0 8.0 Cycle life Density / A g^{-1} (A g^{-1}) (A g^{-1})								Cycle life (1000 cycles/5 A g ⁻¹)
AC	74	66	56	48	40	31	22	66%
NVPOF	123	117	105	92	75	53	18	69%
AC/NVPOF	98	90	77	65	50	33	20	60%

 Table S4 Charged specific capacity and cycling retention of the Cathode.

Note: The cycling retention was evaluated based on the maximum specific capacity values at the 10th, 20th and 4th cycles for AC, NVPOF and AC/NVPOF electrodes respectively.

		_			
Systems	I	Positive elect	rode	Negative electrode	<i>m</i> +/ <i>m</i> -
	AC	NVPOF	AC/NVPOF	KMF(244)/rGO	
KMF(244)/rGO	74			147	2.0/1.0
//AC (SICs)	/4			147	2.0/1.0
KMF(244)/rGO		122		147	1 2/1 0
//NVPOF (SIBs)		125		147	1.2/1.0
KMF(244)/rGO			08	147	1 5/1 0
//AC/NVPOF (SICBs)			90	147	1.5/1.0

Table S5 The design of m_+/m_- ratios for KMF(244)/rGO//AC SICs, KMF(244)/rGO//NVPOF SIBs, and KMF(244)/rGO//AC/NVPOF SICBs.

Systems	Working	Energy density/	Power density/	Cycle life
Systems	voltage/V	W h kg ⁻¹	kW kg ⁻¹	(%/cycles/ A g ⁻¹)
KMF(244)/rGO//AC (SICs)	0-4.5	85.50-74.25 63.00-51.75 36.00-24.75	0.43-0.86 1.69-3.26 6.17-11.14	82%/100/5 A g ⁻¹ 72%/200/5 A g ⁻¹ 57%/500/5 A g ⁻¹ 52%/1000/5 A g ⁻¹
KMF(244)/rGO//NVPOF (SIB s)	0-4.5	163.97-131.00 91.70-61.70 30.30-17.70	0.66-1.23 2.27-4.19 7.27-13.27	87%/100/5 A g ⁻¹ 74%/200/5 A g ⁻¹ 60%/500/5 A g ⁻¹ 28%/1000/5 A g ⁻¹
KMF(244)/rGO//AC/ NVPOF (SICBs)	0-4.5	160.00-113.6 83.76-51.54 33.00-20.10	0.64-1.17 2.20-4.12 7.56-15.60	90%/100/5 A g ⁻¹ 86%/200/5 A g ⁻¹ 76%/500/5 A g ⁻¹ 60%/1000/5 A g ⁻¹

	Systems	Voltage window / V	Energy density / W h kg ⁻¹	Power density / kW kg ⁻¹	Cycle life	Refs.
	Carbon nanofibers//NaFePO4@C	1.0-4.0	168.1(based cathode active mass)	/	87%/200/0.5 C	[1]
	Se/HMCS//Na ₃ V ₂ (PO ₄) ₃ /C	1.2-4.2	130	0.052	60%(about)/100/0.5 A g ⁻¹	[2]
SIBs	FeSe/CNS//Na ₃ V ₂ (PO ₄) ₃	0.1-2.7	86(max)	1.58(max)	99.9%/140/1 A g ⁻¹	[3]
	PTCDA/NC/CNT// Na4-PTC/CNT	0.25-3.0	85	0.665	86%(about)/200/0.2 A g ⁻¹	[4]
	Na ₃ V ₂ (PO ₄) ₃ :rGO-CNT// Na ₃ V ₂ (PO ₄) ₃ :rGO-CNT	1.0-2.2	150	/	77%/100/10 C	[5]
	C//Na ₃ V ₂ (PO) ₂ F ₃	0.8-4.2	78	/	98.5%/120/0.2 C	[6]
	VN//AC	1.0-4.2	78.43-55.25	0.26-3.9	/	[7]
	FeVO ₄ ·0.6H ₂ O//Na ₃ (VO) ₂ (PO ₄) ₂ F/r GO	0.9-3.1	88-35	0.095-7.9	70%/1000/1 A g ⁻¹	[8]
SICs	m-WO ₃ -x@NM-rGO// MSP-20	1.0-4.3	67(max.)	21(max.)	#	[9]
	Ti(O,N)//AC	0.5-4.0	46-10.9	0.046-11.5	82.9%/500 [/] 1 A g ⁻¹	[10]
	V2O5/CNT//AC	0-2.8	38-7.5	0.14-5	80%/900/60 C	[11]
SICBs	KMF(244)/rGO//AC/NVPOF (SICBs)	0-4.5	160.00-113.6 83.76-51.54 33.00-20.10	0.64-1.17 2.20-4.12 7.56-15.60	90%/100/5 A g ⁻¹ 86%/200/5 A g ⁻¹ 76%/500/5 A g ⁻¹ 60%/1000/5 A g ⁻¹	This work

Table S7 A comparison for the performance of the KMF(244)/rGO//AC/NVPOF SICBs in this study with some reported SICs and SIBs.

Chemicals, Reagents and Materials	Туре	Company	Characteristics
NiCl ₂ ·6H ₂ O	AR	SinoPharm	purity≥98.0%
CoCl ₂ ·6H ₂ O	AR	SinoPharm	purity≥99.0%
MnCl ₂ ·4H ₂ O	AR	SinoPharm	purity≥99.0%
KF·2H ₂ O	AR	SinoPharm	purity≥99.0%
PVP-K30	GR	SinoPharm	/
EG	AR	SinoPharm	purity≥99.0%
Graphene oxide (GO)	/	ZhengZhou JingHong New Energy	3-10 floors Conductivity: 2.0*10 ⁵ S m ⁻¹ SSA: 150~200 m ² g ⁻¹
Activated carbon (AC)	YEC 8b	FuZhou YiHuan	D50: ~10 μm; Density: 0.4 g cm ⁻³ ; SSA:2000~2500 m ² g ⁻¹
Na ₃ V ₂ (PO ₄) ₂ O ₂ F (NVPOF)	/	NEWARE	purity≥99.0%
Superconductive carbon black	Battery grade	ЛН	/
NMP	AR	Kermel	purity≥99.0%
PVDF	Battery grade	ЛН	/
Electrolytes	Na206-181224	MJS	0.85 M NaPF ₆ /EC:DEC:EMC (1:1:1) / 5% FEC
Na plate (Homemade)	Battery grade	/	/
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μ m; weight: 87 g m ⁻²
Carbon coated- Al foil	222*0.015	GuagZhou NaNuo	Total thickness: 17 µm; Strength: 192 Mpa
Glass microfiber filters	GF/D 2.7 μm; 1823-025	Whatman	Diameter: 25 mm; Thickness: 675 μm; weight: 121 g m ⁻²
Cell components	CR-2032	ShenZhen TianChenHe	/

Table S8 Chemicals, reagents, and materials used in the study.

	Reagent							
Samples	NiCl ₂ ·6H ₂ O (mmol)	CoCl ₂ ·6H ₂ O (mmol)	MnCl ₂ ·4H ₂ O (mmol)	KF·2H ₂ O (mmol)	PVP-K30 (g)	GO (g)	EG (ml)	
811	1.6	0.2	0.2	5	0.2	0.06	32	
622	1.2	0.4	0.4	5	0.2	0.06	32	
424	0.8	0.4	0.8	5	0.2	0.06	32	
181	0.2	1.6	0.2	5	0.2	0.06	32	
262	0.4	1.2	0.4	5	0.2	0.06	32	
442	0.8	0.8	0.4	5	0.2	0.06	32	
244	0.4	0.8	0.8	5	0.2	0.06	32	
226	0.4	0.4	1.2	5	0.2	0.06	32	
118	0.2	0.2	1.6	5	0.2	0.06	32	

Table S9 The usage amounts of reagents of the KMF/rGO (811-118) samples.

References

- [1] Y. C. Liu, N. Zhang, F. F. Wang, X. B. Liu, L. F. Jiao, L.-Z. Fan, Approaching the Downsizing Limit of Maricite NaFePO₄ toward High-Performance Cathode for Sodium-Ion Batteries, Adv. Funct. Mater. 28 (2018) 1801917.
- [2] P. Xue, Y. J. Zhai, N. N. Wang, Y. H. Zhang, Z. X. Lu, Y. L. Liu, Z. C. Bai, B. K. Han, G. F. Zou, S. X. Dou, Selenium@Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries, Chem. Eng. J. 392 (2020) 123676.
- [3] Z. Xiong, D. D. Sun, X. L. Jia, J. S. Zhou, Core/shell FeSe/carbon nanosheet-assembled microflowers with ultrahigh coulombic-efficiency and rate performance as nonpresodiate anode for sodium-ion battery, Carbon 166 (2020) 339-349.
- [4] G. Y. Zhou, L. L. Mo, C. Y. Zhou, Y. Wu, F. L. Lai, Y. Lv, J. M. Ma, Y.-E. Miao, T. X. Liu, Ultrastrong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries, Chem. Eng. J. (2020) 127597.
- [5] C. B. Zhu, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network, Adv. Mater. 28 (2016) 2409-2416.
- [6] A. Ponrouch, R. Dedryvère, D. Monti, A. E. Demet, J. M. Ateba Mba, L. Croguennec, C. Masquelier, P. Johansson, M. R. Palacín, Towards high energy density sodium ion batteries through electrolyte optimization, Energy Environ. Sci. 6 (2013) 2361-2369.
- [7] S. Q. Wei, C. D. Wang, S. M. Chen, P. J. Zhang, K. F. Zhu, C. Q. Wu, P. Song, W. Wen, L. Song, Dial the Mechanism Switch of VN from Conversion to Intercalation toward Long Cycling Sodium-Ion Battery, Adv. Energy Mater. 10 (2020) 1903712.
- [8] J. Dong, Y. He, Y. L. Jiang, S. S. Tan, Q. L. Wei, F. Y. Xiong, Z. L. Chu, Q. Y. An, L. Q. Mai, Intercalation pseudocapacitance of FeVO₄·nH₂O nanowires anode for high-energy and high-power sodium-ion capacitor, Nano Energy 73 (2020) 104838.
- [9] M. S. Kim, E. Lim, S. Kim, C. Jo, J. Chun, J. Lee, General Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors, Adv. Funct. Mater. 27 (2017) 1603921.
- [10] J. Dong, Y. L. Jiang, Q. D. Li, Q. L. Wei, W. Yang, S. S. Tan, X. Xu, Q. Y. An, L. Q. Mai, Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors, J. Mater. Chem. A 5 (2017) 10827-10835.
- [11] Z. Chen, V. Augustyn, X. L. Jia, Q. F. Xiao, B. Dunn, Y. F. Lu, High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites, ACS Nano 6 (2012) 4319-4327.