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S1. Supplementary figures for the machine learning results and initial training set
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Fig. S1 Prediction results of the machine learning model, MOF-NET. The model is 

trained with frameworks after cycle 3. a) Predicted selectivity versus true selectivity. b) 

Predicted  versus true . The model showed high accuracy in low selectivity 𝐾𝐻,𝑋𝑒 𝐾𝐻,𝑋𝑒

and low  region which helped the genetic algorithm to sort out low performing 𝐾𝐻,𝑋𝑒

structures well enough.



Fig. S2 Cycle versus selectivity. Blue bar denotes mean selectivity value of MOFs and 

red bar denotes selectivity value of top 1% MOF for each cycle, respectively. There were 

no dramatic changes after cycle 3 for both mean selectivity value and selectivity value of 

top 1% MOF.
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Fig. S3  versus selectivity plot for initial randomly generated frameworks. (  < 𝐾𝐻,𝑋𝑒 𝐾𝐻,𝑋𝑒

 mol kg-1 Pa-1 were eliminated). As shown in figure,  gradually increases with 10 ‒ 6 𝐾𝐻,𝑋𝑒

selectivity. 



S2. Additional information for MOF candidates with record-breaking Xe/Kr 

selectivity

To validate accuracy of simulations via in-house GPU code,1 we simulated 16 

promising candidates with both in-house GPU code and RASPA software package2 for 

. RASPA software package slightly overestimated  compared to in-house GPU 𝐾𝐻,𝑋𝑒 𝐾𝐻,𝑋𝑒

code, but every 16 frameworks have nearly similar values in both simulation results (Fig. 

S4). This discrepancy is attributed to the difference in software implementations. Unlike 

RASPA software package, our in-house GPU code is encouraged to use energy grid for 

most of cases. Thus, GPU code obtains potential energy from discrete points within 

energy grids via linear interpolation functions.

3 node building blocks (NBBs) were involved in 2 chosen MOF candidates, 

htp+N5+N270+E0 and htp+N5+N92+E0. N5, benxenehexacarboxylate moiety (BHC),3 

was used as organic linker for both frameworks. N92 (Indium metal cluster from 

REFCODE : IMUTUG_ion_b)4 and N270 (Gallium metal cluster from REFCODE : 

HOMZEP_clean)5 were respectively used as metal clusters for each candidate. 
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htp+N5+N270+E0 htp+N5+N92+E0

Selectivity (rigid, GPU) 100 78

Selectivity (rigid, RASPA) 110 78

 (mol kg-1 Pa-1, GPU)𝐾𝐻,𝑋𝑒 1.6 × 10 ‒ 1 5.8 × 10 ‒ 2

 (mol kg-1 Pa-1, RASPA)𝐾𝐻,𝑋𝑒 1.7 × 10 ‒ 1 6.3 × 10 ‒ 2

Xe  (kJ mol-1)𝑄𝑠𝑡 44 41

Kr  (kJ mol-1)𝑄𝑠𝑡 31 29

Selectivity (flex) 97 75

Building blocks
Node : N5, N270

Edge : none

Node : N5, N92

Edge : none

Table S1 Details on properties (  (rigid),  (flex), ) and components of 2 𝑆𝑋𝑒/𝐾𝑟 𝑆𝑋𝑒/𝐾𝑟 𝐾𝐻,𝑋𝑒

promising candidates, htp+N5+N270+E0 and htp+N5+N92+E0.
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Fig. S4 RASPA versus in-house GPU code for the MC simulations of  without 𝐾𝐻,𝑋𝑒

blocking algorithm. The axis was converted to log scale for convenience.



Framework
Normalized Energy 

(Energy / # of metal)

Energy

(kcal/mol)

nia+N5+N270+E0 200 1200

std+N5+N270+N5+E0+E0 210 2500

htp+N5+N270+E0 260 3100

ste+N5+N270+N270+E0+E0 280 3300

std+N270+N5+N270+E0+E0 310 3700

nia+N270+N5+E0 350 2100

sss+N270+N5+N270+E0+E0 370 3300

ste+N270+N5+N5+E0+E0 390 4700

htp+N270+N5+E0 400 4800

sss+N5+N270+N5+E0+E0 440 4000

Table S2 Energy calculation results for polymorphic structure of htp+N5+N270+E0
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Framework
Normalized Energy 

(Energy / # of metal)

Energy

(kcal/mol)

nia+N5+N92+E0 170 1000

std+N5+N92+N5+E0+E0 180 2100

htp+N5+N92+E0 230 2700

ste+N5+N92+N92+E0+E0 240 2900

std+N92+N5+N92+E0+E0 260 3100

nia+N92+N5+E0 310 1800

sss+N92+N5+N92+E0+E0 310 2800

ste+N92+N5+N5+E0+E0 340 4000

htp+N92+N5+E0 340 4100

sss+N5+N92+N5+E0+E0 370 3300

Table S3 Energy calculation results for polymorphic structures of htp+N5+N92+E0
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Fig. S5 Adsorption isotherm of htp+N5+N270+E0 and htp+N5+N92+E0 with xenon and 

krypton, respectively.



S3. Details on cost functions of genetic algorithm

We devised a new cost function for the genetic algorithm for inverse design of 

MOFs with various kinds of conditions. Conventional cost function to generate record-

breaking MOFs was simply to predict selectivity value of frameworks by the machine 

learning model (Fig. S6a).6 Crossover and mutation occured during the genetic algorithm 

and frameworks were optimized to have high selectivity value.

S3-1. Cost function for one user-desired property

In this case, cost function was changed to predict difference between the 

prediction value (obtained from output of the machine learning model) and targeted user-

desired value of properties. For example, when one wants to discover MOFs with 

selectivity of 5, then a fitness value (result of cost function) is absolute value of predicted 

selectivity minus 5 (Fig. S6b). Then, the genetic algorithm scratches frameworks from 

the vast MOF spaces which have as small fitness value as possible to satisfy the user-

desired selectivity of 5. Same approach was applied in  also. Every  was 𝐾𝐻,𝑋𝑒 𝐾𝐻,𝑋𝑒

normalized with log scale to directly apply the weights of machine learning model which 

designed to predict the value of properties within 0 ~ 1.

S3-2. Cost function for two user-desired property simultaneously.

This case is much more complicate than the previous case. Generally, the scales 

of properties are different from each other. For example, Xe/Kr selectivity is range from 

0 to 100 or more but  is range from to under  or less. To compare two 𝐾𝐻,𝑋𝑒 10 ‒ 1 10 ‒ 6

different properties, we standardized the value of properties by the mean and standard 

deviation value of training set. We assumed that the distribution of properties may follow 

Gaussian distribution for large amounts of data for standardization. A fitness value is 

distance between standardized targeted value and standardized predicted value (Fig. S6c). 
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The algorithm gradually optimizes frameworks to reduce the gap between two points to 

achieve pareto optimization for both conditions.

S3-3. Cost function for minimum limitation of selectivity

Some people may conceive ramp function as a suitable cost function to generate 

frameworks which can exceed specific minimum threshold of selectivity. However, ramp 

function showed poor performance in this work because of the low prediction accuracy 

of the machine learning model in high selectivity regime. To overcome this problem, we 

used the idea of the cost function in section S3-1 to devise a new cost function. As 

aforementioned, it is possible to optimize frameworks to have specific value of 

selectivity. Thus, we manipulated cost function to follow ramp function which set the 

minimum limitation as a point of inflection and 30% improvement of the minimum 

limitation as an end point. Then, the fitness value gradually decreases for higher 

selectivity regime (Fig. S6d). For example, if one wants to find MOFs with selectivity 

higher than 5, a framework (  = 6.5) has the largest fitness value and another 𝑆𝑋𝑒/𝐾𝑟

framework of selectivity (  = 4) has zero for fitness value, and the other framework (𝑆𝑋𝑒/𝐾𝑟

 = 7) has quite small fitness value. The algorithm optimizes frameworks to have 𝑆𝑋𝑒/𝐾𝑟

large fitness value to which help higher selectivity value than minimum threshold value 

be obtained.
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Fig. S6 Cost functions of genetic algorithms. a) Cost function to generate record-breaking 

MOFs. b) Cost function to generate MOFs which satisfy one kind of user-desired 

property. c) Cost function to generate MOFs which satisfy two different kinds of user-

desired properties simultaneously. d) Cost function to generate MOFs which satisfy 

specific minimum selectivity value.
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S4. Additional results for user-desired frameworks
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Fig. S7 Comparing the proportion of frameworks in the vicinity of target value of properties 

(  = 10,  = 10-4). a) Selectivity versus  plot of initial randomly generated 𝑆𝑋𝑒/𝐾𝑟 𝐾𝐻,  𝑋𝑒 𝐾𝐻,  𝑋𝑒

frameworks. b) Selectivity versus  plot of frameworks which were generated by 𝐾𝐻,  𝑋𝑒

genetic algorithm to target specific condition. Red area is 30% of target selectivity and ±

. There was obvious increase in proportion from 4.56 to 24.56 when we did inverse 𝐾𝐻,𝑋𝑒

design. 
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Fig. S8 Comparing the proportion of frameworks in the vicinity of target value of 

properties (  = 5,  = 10-4). a) Selectivity versus  plot of initial randomly 𝑆𝑋𝑒/𝐾𝑟 𝐾𝐻,𝑋𝑒 𝐾𝐻,  𝑋𝑒

generated frameworks. b) Selectivity versus  plot of frameworks which were 𝐾𝐻,  𝑋𝑒

generated by genetic algorithm to target specific condition. Red area is 30% of target ±

selectivity and . There was obvious increase in proportion from 1.32 to 12.17 when 𝐾𝐻,𝑋𝑒

we did inverse design. 



16

Fig. S9 Comparing the proportion of frameworks in the vicinity of target value of 

properties (  = 5,  = 10-5). a) Selectivity versus  plot of initial randomly 𝑆𝑋𝑒/𝐾𝑟 𝐾𝐻,𝑋𝑒 𝐾𝐻,  𝑋𝑒

generated frameworks. b) Selectivity versus  plot of frameworks which were 𝐾𝐻,  𝑋𝑒

generated by genetic algorithm to target specific condition. Red area is 30% of target ±

selectivity and . There was obvious increase in proportion from 0.85 to 15.04 when 𝐾𝐻,𝑋𝑒

we did inverse design. 
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Fig. S10 Comparing distribution of selectivity of frameworks generated from the cost 

function to target specific selectivity and to target fine-tuned condition (minimum 

selectivity). a) Selectivity as 5. b) Selectivity as 10. c) Selectivity as 15. d) Selectivity as 

20. Green histograms denote the results of the cost function to optimize frameworks to 

have specific targeted value of selectivity. Blue histograms denote the results of the cost 

function to optimize frameworks to have higher selectivity value than minimum 

threshold.



S5. Details on polymorph finder

Polymorph finder is polymorphic structure generation code to work with 

PORMAKE database.6 As written in method section of manuscript, polymorph finder 

analyzes “connectivity” of frameworks to discriminate polymorphic candidates from all 

possible frameworks which can be made from same building blocks (node building 

blocks and edge building blocks). Connectivity means that how nodes are connected to 

each other. For convenience, we classified every topology in PORMAKE database into 

186 groups by connectivity distribution of topologies (Fig. S11).

Fig. S11. Connectivity and Connectivity distribution of topology. 

Polymorph finder gets a MOF as input. MOF should be converted into unique 

MOF representation, topology + NBBs + EBBs, to get overall data (topology and building 

blocks) of the framework properly. Once a unique MOF representation is given, the code 

identifies the possible topologies from PORMAKE database by analyzing connectivity 

distribution of the topology of input MOF. Then, for all possible topologies, every 
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combination of given building blocks (from input MOF) are generated. Finally, 

candidates, which have same ratio of building blocks combinations (NBB-EBB-NBB) 

with given MOF, are selected as polymorphic structures (Fig. S12).

Fig. S12 Frameworks with different ratio of building block combinations are not regarded 

as polymorphic structures.
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S6. Details on Monte Carlo simulation and additional candidates

As written in the manuscript, there are large discrepancy between experimental 

and theoretical results especially for optimal materials. Therefore, similar to the previous 

work, we did a literature survey to identify relationship between experimental and 

simulation data.7-10 The exponential trend line can represent the relationship well and 

show that computational simulations can predict the trend of the optimal materials (Fig. 

S13).

 (K)𝜀/𝑘𝐵 )𝜎 (Å  (K)𝜀/𝑘𝐵 )𝜎 (Å

Zn 62.4 2.46 Se 146.4177558 3.7462345
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Fig. S13 Simulation results versus experimental values scatter plot for 11 structures from 

literature survey. The trend line is represented as exponential function.

( ^ : at 298 K, * : at 292 K)  



C 52.84 3.43 Rb 20.126152 3.6651626

H 22.14 2.57 Sr 118.241143 3.2437669

O 30.19 3.12 Y 36.2270736 2.9800605

Mg 55.85 2.69 Ru 28.1766128 2.6397367

N 34.72 3.26 Pd 24.1513824 2.5827191

S 137.89 3.6 Sn 285.2882046 3.9128328

Cl 114.24 3.516 Sb 225.9160562 3.937778

F 25.163 2.996 Ba 183.1479832 3.2990027

Br 126.32 3.731 Pr 5.031538 3.2125854

Cu 2.515 3.113 Nd 5.031538 3.1849675

V 8.05 2.801 Sm 4.0252304 3.135968

Zr 34.72 2.78 Tb 3.5220766 3.0744959

Si 202.3 3.825 Dy 3.5220766 3.0540052

I 170.6 4 Ho 3.5220766 3.0370781

Ge 190.71 3.812 Er 3.5220766 3.01985

P 153.47 3.693 Tm 3.0189228 3.0058966

Co 7.044 2.5576 Yb 114.7190664 2.9889695

Mn 6.541 2.638 W 33.7113046 2.7341721

Eu 4.025 3.1119 Re 33.2081508 2.6317186

Ag 18.1135 2.804 Au 19.6229982 2.9337337

Gd 4.528 3 Hg 193.714213 2.4098845

Cs 22.64 4.024 Pb 333.5909694 3.8281973

In 301.38 3.976 Bi 260.6336684 3.893233
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Mo 28.176 2.719 Th 13.0819988 3.0254964

Ce 6.541 3.168 U 11.0693836 3.0246055

Cd 114.72 2.5372 Lu 20.6293 3.2428

Nb 29.686 2.819 Pt 40.2523 2.453539

Na 15.094 2.657 Te 200.25 3.9823

La 8.553 3.1377 Be 42.768 2.4455

Li 12.578845 2.1835959 Pu 8.05046 3.0504

B 90.567684 3.6375447 Ti 8.554 2.829

Al 254.092669 4.0081591 Ir 36.719 2.492

K 17.610383 3.3961108 Os 18.617 2.778

Ca 119.7506044 3.0281691 Ta 40.757 2.823

Sc 9.5599222 2.9355155 Rh 26.668 2.6084

Cr 7.547307 2.6931907 Am 7.044 3.0109

Fe 6.5409994 2.5943008 Np 9.56 3.049

Ni 7.547307 2.5248106 Tl 342.16 3.871

Ga 208.808827 3.9048147 Hf 36.23 2.797

As 155.4745242 3.768507

Table S4. Universial Force Field (UFF) parameters for host frameworks, MOFs.

 (K)𝜀/𝑘𝐵 )𝜎 (Å

Xenon 229.8 3.97

Krypton 165.2 3.66

Table S5. Force field parameters for guest atoms, Xenon and Krypton
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 𝐾𝐻, 𝑋𝑒

(mol kg-1 Pa-1)

𝑆𝑋𝑒/𝐾𝑟 LCD 

(Å)

PLD  

(Å)

htp+N5+N92+E0 5.8 × 10 ‒ 2 78 5.1 4.6

htp+N5+N270+E0 1.6 × 10 ‒ 1 100 5.0 4.5

pha+N271+N328+E127+E0 9.4 × 10 ‒ 3 77 25 17

pha+N271+N328+E159+E0 5.9 × 10 ‒ 3 71 29 20.

cdp+N164+N693+E0+E0 5.4 × 10 ‒ 2 73 4.8 3.5

xik+N388+N688+E0+E0 7.7 × 10 ‒ 2 99 6.9 3.8

whq+N270+E0 5.2 × 10 ‒ 2 110 9.5 7.6

fte+N3+N238+E0+E0+E223 3.6 × 10 ‒ 1 290 8.0 3.5

fte+N3+N238+E0+E0+E23 2.9 × 10 ‒ 1 250 5.8 3.5

fte+N3+N238+E0+E0+E156 2.7 × 10 ‒ 1 230 4.6 3.2

fjh+N130+N2+N223+E0+E0 2.5 × 10 ‒ 2 76 5.5 3.9

pha+N271+N328+E88+E0 9.5 × 10 ‒ 3 77 24 16

urt+N544+N522+N495+E79+E0 7.7 × 10 ‒ 2 100 8.3 3.7

bbd+N434+N223+E184+E25+E0 1.1 × 10 ‒ 2 77 15 10.

bbd+N434+N223+E0+E25+E0 1.0 × 10 ‒ 2 78 15 10.

bbd+N434+N223+E0+E205+E0 1.7 × 10 ‒ 2 92 14 8.6

Table S6. Summary on 16 candidates after flexible molecular simulation and RASPA 

simulation. Final 2 candidates after polymorphic simulations are highlighted as bold type. 

Xenon Henry coefficient and Xe/Kr selectivity were calculated via in-house GPU codes 

and geometric descriptors (LCD and PLD) were calculated via Zeo++ software.
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