Supporting Information

A Facile and Broadly Applicable CdBr₂-Passivating Strategy for Halide Migration-Inhibiting Perovskite Films and High-Performance Solar Cells

Xiangnan Sun^a, Xitao Li^a, Haotong Li^a, Yao Li^a, Siqi Li^a, Yan-Zhen Zheng^{*a} and Xia Tao^{*a}

^a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, P.R. China
^{*} Corresponding author. Tel: +86-10-6445-3680 Fax: +86-10-6443-4784
E-mail: taoxia@mail.buct.edu.cn, taoxia@yahoo.com; zhengyz@mail.buct.edu.cn

Experimental section

Characterizations

Thin Film Characterization: UV-vis absorption spectra of perovskite film on the glass were recorded using a Perkin Elmer Lambda 950 UV/VIS spectrophotometer over the 300-900 nm wavelength range. PL and TRPL were obtained on an Edinburgh Instruments FLS 980 with an excitation wavelength of 470 nm. The crystallinity of the perovskite films was characterized using powder X-ray diffractometer (Rigaku, D/max 2500 VB25/PC) with CuK α radiation ($\lambda = 0.15406$ nm) at a scan rate of 5°·min⁻¹. The perovskite film morphology was analyzed using scanning electron microscope (SEM, JEOL-7610F) and atom force microscopy (AFM, Bruker Metrology Nanoscope III-D). The energy-dispersive spectroscopy (EDS) was measured using an X-ray energy dispersive spectrometer mounted on a JEOL-7610F microscope. The XPS and UPS measurements were carried out by Kratos X-ray photoelectron spectrometer (ThermoFisher ESCALAB 250Xi) equipped with monochromatic Al K α (1,486.6 eV) and non-monochromatic HeI (21.22 eV) sources.

Device Characterization: The current density-voltage (*J-V*) characteristics were measured using a solar simulator (Oriel Sol3A) with the Keithley 2400 source meter under AM1.5G. The *J-V* curves were measured in the ambient atmosphere with a scan rate of 50 mV s⁻¹. The external quantum efficiency (EQE) spectrum was measured using an EQE system (Oriel instruments) with 150 W xenon lamp (USHIO, Japan) as a source of monochromatic light. The electrochemical impedance spectroscopy (EIS) measurement and other electrochemical testing were measured by using an electrochemical workstation (Zennium 400147). The EIS measurements were recorded on a Zahner electrochemical work station set to a frequency ranging from 10⁶ Hz to 10 Hz in the dark state. All SCLC tests were measured at room temperature under dark conditions.

Fig. S1 (a) I 3d for perovskite films with and without the $CdBr_2$ treatment. (b) Cd 3d for $CdBr_2$ -treated perovskite film and pure $CdBr_2$.

Fig. S2 SEM-EDS mappings of Pb, I, Cd and Br elements for the CdBr₂ modified perovskite film deposited onto the ITO substrate.

Fig. S3 (a) Steady state PL spectra of the perovskite films depending on $CdBr_2$ concentration. (b) Steady state PL spectra collected from the film and glass side of the perovskite film without and with $CdBr_2$ -treated. (c) time-resolved PL decay spectra of the perovskite films depending on $CdBr_2$ concentration.

Fig. S4 J_{SC} versus light intensity for the PSCs with and without CdBr₂ treatment.

Fig. S5 $(\alpha hv)^{1/2}$ as a function of photo energy of perovskite films with and without CdBr₂-treated.

Fig. S6 Photovoltaic parameters statistics distribution of (a) PCE, (b) FF, (c) V_{OC} , (d) J_{SC} for the devices prepared from the four different perovskite films. (40 devices were collected from the different batch).

Fig. S7 Nyquist plots at bias 0.80 V of the perovskite devices with different concentration CdBr₂-treated under dark conditions.

Fig. S8 (a) *J-V* curves of PSCs with different concentration CdI_2 -treated. (b) *J-V* curves of the champion PSCs with $CdBr_2$ and CdI_2 treatment.

Fig. S9 (a) PL spectra of the perovskite films depending on CdI_2 concentration. (b) PL spectra of the control, CdI_2 and $CdBr_2$ -treated perovskite films. (c) TRPL spectra of the perovskite films depending on $CdBr_2$ concentration.

Fig. S10 PL spectra of the control and CdBr₂-treated (a) CsFAPbI₃ perovskite film and (b) CsPbI₂Br perovskite film.

Fig. S11 The cross-sectional SEM images of (a) $MAPbI_3$ films, (b) $CsFAPbI_3$ films and

(c) $CsPbI_2Br$ films without or with $CdBr_2$ -treated.

Fig. S12 Cross-sectional SEM-EDS mappings of Cd, Pb and I elements for the CdBr₂-treated perovskite film.

Fig. S13 AFM images of (a and b) MAPbI₃ perovskite films without and with CdBr₂-treated, (c and d) CsFAPbI₃ perovskite films without and with CdBr₂-treated.

Fig. S14 (a) XRD patterns of the different concentration CdBr₂-treated perovskite films.
(b) The (110) peak of CdBr₂-treated perovskite film. (c) XRD patterns of the control and CdBr₂- or CdI₂-treated perovskite films.

Fig. S15 Long-term stability measurements of (a) $CsFAPbI_3$ -based devices and (b) $CsPbI_2Br$ -based devices without encapsulation under one sun illumination at room temperature in N_2 .

Samples	Name	Atomic%
Cantual	Pb	15.33
Control	Ι	39.24
T ()	Pb	15.58
Ireated	I+Br	43.78

Table S1 The specific percentage of X/Pb atomic ratio.

 Table S2 Parameters of the TRPL spectroscopy based on the perovskite films with

 different concentrations of CdBr₂-treated.

Samples	$ au_1$	% of τ_1	$ au_2$	% of τ_2	$ au_{ave}$
Control	28.26	14.34	135.90	85.66	120.46
CdBr ₂ -0.05	43.90	6.65	118.09	93.35	113.16
CdBr ₂ -0.1	36.11	6.61	221.47	93.39	209.22
CdBr ₂ -0.2	35.58	10.19	151.49	89.81	139.68

PSCs		V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	η (%)	HI
Control	RS	1.00	21.08	61.82	13.03	14 20/
Control	FS	0.96	20.06	58.14	11.19	14.2%
	RS	1.06	22.92	66.08	16.05	5 20/
CuBI ₂ -0.1	FS	1.05	22.30	64.95	15.21	5.2%

Table S3 Photovoltaic parameters of C-PSCs with or without $CdBr_2$ treatment measured in both reverse and forward scan.

*The hysteresis index (HI) was calculated to quantify the hysteresis level according to

the following equation:

 $\mathrm{HI} = \frac{\mathrm{PCE}_{\mathrm{RS}} - \mathrm{PCE}_{\mathrm{FS}}}{\mathrm{PCE}_{\mathrm{RS}}}$

Table S4 Photovoltaic parameters of PSCs with different concentration CdI_2 treatment.

PSCs	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	η (%)
Control	1.00	20.94	61.70	12.91
CdI ₂ -0.1	1.02	21.41	63.20	13.86
CdI ₂ -0.2	1.04	22.24	64.35	14.88
CdI ₂ -0.3	1.01	20.39	59.72	12.54

Samples	$ au_1$	% of τ_1	$ au_2$	% of τ_2	$ au_{ave}$
CsFAPbI ₃	14.27	33.61	33.38	66.39	26.96
CsFAPbI ₃ -CdBr ₂	21.79	37.77	44.11	62.23	35.68
CsPbI ₂ Br	5.60	12.39	43.84	87.61	39.10
CsPbI2Br-CdBr2	1.29	0.47	61.09	99.53	60.80

Table S5 Parameters of the TRPL spectroscopy based on the different perovskitefilms without or with $CdBr_2$ -treated.

Table S6 Summary of key related information about the PSCs (structure similar to this work)

Perovskite component	PSC structure	PCE (%)	Date	Ref
MAPbI ₃	ITO/SnO ₂ /PVK/Co ₃ O ₄ @NC/C	14.63%	2021.02	1
$Cs_{0.05}(FA_{0.85}MA_{0.15})_{0.95}Pb(I_{0.85}Br_{0.15})_3$	FTO/SnO ₂ /PVK/MWCNT(1 cm ²)	11.2%	2021.02	2
MAPbI ₃	FTO/c-TiO ₂ /m-TiO ₂ /PVK/C	11.91%	2020.06	3
MAPbI ₃	FTO/TiO ₂ /PVK/C	14.10%	2020.07	4
MAPbI ₂ Cl	FTO/c-TiO ₂ /m-TiO ₂ /PVK/C	11.70%	2019.01	5
$CsFA_{0.83}MA_{0.17}PbI_{2.53}Br_{0.47}$	FTO/SnO ₂ /PVK/CuSCN/C	15.3%	2020.03	6
MAPbI ₃	FTO/c-TiO ₂ /m-TiO ₂ /PVK/C	15.21%	2019.03	7
$FA_{0.8}Cs_{0.2}PbI_{2.64}Br_{0.36}$	FTO/c-TiO ₂ /m-TiO ₂ /PVK/PEO/C	14.9%	2019.04	8
$FA_{0.85}MA_{0.15}PbI_{2.85}Br_{0.15}$	FTO/c-TiO ₂ /m-TiO ₂ /PVK/C	14.41%	2019.01	9
MAPbI ₃	ITO/HMB-C ₆₀ /PVK/C	16.03%	2019.06	10
MAPbI ₃	FTO/c-TiO ₂ /m-TiO ₂ /PVK/NiO/C	13.6%	2019.05	11

$Cs_{0.05}FA_{0.81}MA_{0.14}PbI_{2.55}Br_{0.45}$	ITO/SnO ₂ (QDs)/PVK/C	13.64%	2020.03	12
MAPbI ₃	FTO/TiO ₂ /PVK- SWCNT/SWCNT-C	15.73%	2019.01	13
$Cs_X(MA_{0.7}FA_{0.3})_{1-X}PbI_3$	FTO/c-TiO ₂ /m-TiO ₂ /PVK/C	15.03%	2019.01	14
$Cs_{0.05}FA_{0.81}MA_{0.14}PbI_{2.55}Br_{0.45}$	FTO/c-TiO ₂ /m-TiO ₂ /PVK/C	15.09%	2020.06	15
MAPbI ₃	FTO/ZnO-RGO-CuInS ₂ /PVK/Au	15.74%	2020.06	16
MAPbI ₃	ITO/SnO ₂ /PVK/CdBr ₂ /C	16.05%		This work

Notes and references

C. Geng, P. Wei, H. Chen, H. Liu, S. Zheng, H. Wang and Y. Xie, *Chem. Eng. J.*,
 2021, 414, 128878.

2 R. Chen, Y. Feng, L. Jing, M. Wang, H. Ma, J. Bian and Y. Shi, *J. Mater. Chem. C*,
2021, 9, 3546-3554.

3 T. Xu, K. Zou, X. Sun, Z. Wan, H. Tang, Y. Zhang, L. Chen, Q. Qiao and W. Huang, *Mater. Lett.*, 2020, **275**, 128157.

4 Q.-Q. Chu, Z. Sun, B. Ding, K. Moon, G.-J. Yang and C.-P. Wong, *Nano Energy*, 2020, 77, 105110.

5 S. Sajid, A. M. Elseman, D. Wei, J. Ji, S. Dou, H. Huang, P. Cui and M. Li, *Nano Energy*, 2019, **55**, 470-476.

6 Y. Yang, M. T. Hoang, D. Yao, N. D. Pham, V. T. Tiong, X. Wang, W. Sun and H. Wang, Sol. Energy Mater. Sol. Cells, 2020, 210, 110517.

Y. Xiao, C. Wang, K. K. Kondamareddy, P. Liu, F. Qi, H. Zhang, S. Guo and X.-Z.Zhao, J. Power Sources, 2019, 422, 138-144.

8 Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu, Y. Jiang, L. K. Ono and Y. Qi, Adv.
 Mater., 2019, 31, 1804284.

9 C. Wu, K. Wang, Y. Jiang, D. Yang, Y. Hou, T. Ye, C. S. Han, B. Chi, L. Zhao, S.
Wang, W. Deng and S. Priya, *Adv. Funct. Mater.*, 2021, 31, 2006803.

10 J. Zhou, J. Hou, X. Tao, X. Meng and S. Yang, J. Mater. Chem. A, 2019, 7, 77107716.

11 C. Cai, K. Zhou, H. Guo, Y. Pei, Z. Hu, J. Zhang and Y. Zhu, *Electrochim. Acta*, 2019, **312**, 100-108.

12 S.N. Vijayaraghavan, J. Wall, L. Li, G. Xing, Q. Zhang and F. Yan, *Mater. Today Phys.*, 2020, **13**, 100204.

13 Y. Wang, H. Zhao, Y. Mei, H. Liu, S. Wang and X. Li, ACS Appl. Mater. Interfaces, 2019, **11**, 916-923.

14 P. Liu, Y. Gong, Y. Xiao, M. Su, S. Kong, F. Qi, H. Zhang, S. Wang, X. Sun, C.Wang and X.-Z. Zhao, *Chem. Commun.*, 2019, 55, 218-221.

15 L. Gao, J. Hu, F. Meng, Y. Zhou, Y. Li, G. Wei and T. Ma, *J. Colloid Interf. Sci.*,
2020, **579**, 425-430.

16 R. Taheri-Ledari, K. Valadi and A. Maleki, *Prog. Photovolt. Res. Appl.*, 2020, 28, 956-970.