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1. Chemicals and Reagents 

Ti sheets (0.1 mm thickness, 99.6% purity) were purchased from Baosheng Hardware (Bao ji). 

1,4-Dicarboxybenzene (BDC), 2-aminoterephthalic Acid (BDC-NH2), cytochrome C (CytC), and titanium 

isopropoxide were purchased from Aladdin. 3,3,5,5-Tetramethylbenzidine (TMB), Acid orange 7 (AO7), 

N-(3-dimethylaminopropyl)-N′-ethyl-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) were 

purchased from Sigma. Ammonium fluoride (NH4F), ethylene glycol, N,N-dimethylformamide (DMF, 99.8%), 

methanol (CH3OH), and other chemicals were purchased from Sinopharm Chemical Reagent and used as 

received without further purification. All aqueous solutions were prepared using Millipore Milli-Q water with a 

resistivity of 18.0 M∙cm. 

2. Apparatus 

UV-vis absorption spectra were recorded using a Perkin–Elmer spectrometer (Lambda 750S, USA). 

Morphology was characterized using a field-emission scanning electron microscope (Hitachi SU8000, Japan) 

and transmission electron microscope (TEM, JEM 2010, Japan). Crystal structures were identified by XRD 

acquired using an X’Pert XRD spectrometer (Philips, USA) using a CuKα X-ray source. FTIR spectroscopy was 

performed using a Nicolet 6700 instrument (Thermo Fisher, USA). N2 adsorption–desorption isotherms were 

measured using a Micromeritics ASAP 2020 system. Prior to gas sorption measurements, 100 mg of as-formed 

samples was washed thoroughly with DMF and water to remove any remaining acetic acid, and then the 

sample was incubated in ethanol for 3 days, during which the solvent was decanted and freshly replenished 

three times every day. After that, the sample was dried under vacuum at 150 °C for 12 h to remove the 

remaining solvent, yielding a porous material. After ligand thermolysis, about 100 mg sample was treated 

under vacuum at 150 °C for 8 h before gas sorption experiment. In thermogravimetric analysis (TGA), 10 mg of 

the sample was heated using a TGA Q500 thermogravimetric analyzer from room temperature to 600 °C at a 

rate of 10 °C·min
−1

 under air flow of 20 mL∙ min
−1

. A CHI660D electrochemical workstation (CH Instrument, USA) 

was used for all electrochemical tests equipped with two Ag/AgCl electrodes as the anode and cathode. 

Photocatalytic reactions were performed under the irradiation of a white LED (30 W, wavelength 400-600 nm). 

3. Preparation of bulk R%-MIL-125-NH2 

The synthesis of R%-MIL-125-NH2 is based on a reported method.
34,49

 Briefly, after BDC, BDC-NH2, and 

Ti(OiPr)4 (1 mmol, 0.3 mL) were dissolved in 10 mL of a mixture of DMF and CH3OH (VDMF:VCH3OH = 9:1), it was 

sonicated for 15 min at room temperature and then transferred to a 50 mL Teflon-lined autoclave. The sealed 

vessel was then heated at 150 °C for 24 h to obtain R%-MIL-125-NH2. After cooling to room temperature, the 

synthesized product was washed with DMF and dried in a vacuum oven at room temperature. 

4. Preparation of 30%-MIL-125-NH2(CytC)co/TiO2M 

CytC was grafted to the surface through EDC/NHS activation: 1.0 mL of 20 mg/mL solution of EDC and 10 

mg/mL solution of NHS were added with 1.0 mg of CytC for 60 min to activate carboxylic group on CytC. Then 

30%-MIL-125-NH2/TiO2M with –NH2 groups were immersed in this solution for 12 h at room teperature. After 

grafting the modified grating was washed by ultrapure water and dried at room temperature. 

5. Measurement of photocatalysis-generated H2O2 

UV-Vis spectra were used to detect H2O2 produced by hpMIL-125/TiO2M and Au@hpMIL-125/TiO2M. 

Briefly, 3 mg Au@hpMIL-125/TiO2M was dipped in 1 mL H2O and then exposed to visible-light irradiation (30 W 

white LED light). After irradiation for a certain period, 1.5 mM ABTS and 0.1 mg/mL HRP were added. After 

incubating the solution at 37 C for 20 min in dark, the absorption spectra of ABTS at 734 nm were recorded 

using a Perkin–Elmer spectrometer. 

 

 



 

 

Fig. S1 (a) SEM cross-sectional image of amorphous TiO2M. EDS-SEM cross-sectional mapping for different 

elements of amorphous TiO2M: (b) Ti, (c) O, (d) F. 

 

  



 

Fig. S2 (a) SEM images of TiO2M treatment in a 50 mL Teflon-lined autoclave containing 200 μL HCl (0.1 M), 9 

mL DMF and 1mL CH3OH at 150 
o
C for 12 h ((a, b) top view, (c, d) top cross-section, (e, f) bottom view, (g, h) 

bottom cross-section). 

 

In Fig. S2, the hydrothermal treatment in organic solution without ligands keeps the architecture of TiO2 

nanochannel wall. No crystallite can be found on the wall. Therefore, the plate-like nanocrystals observed in 

our experiment can be ascribed to the metal-organic framework formed by the coordination of the ligands 

(BDC or BDC-NH2) and Ti
4+

. 

 

  



 

Fig. S3 SEM images of (a, d) MIL-125/TiO2M, (b, e) 10%-MIL-125-NH2/TiO2M, (c, f) 20%-MIL-125-NH2/TiO2M, (g, 

j) 30%-MIL-125-NH2/TiO2M, (h, k) 40%-MIL-125-NH2/TiO2M, (i, l) 50%-MIL-125-NH2/TiO2M. 

 

  



 

Fig. S4 XRD patterns of TiO2M treatment in a 50 mL Teflon-lined autoclave containing 200 μL HCl (0.1 M), 9 mL 

DMF and 1mL CH3OH at 150 
o
C for 12 h (black line) and TiO2M annealed at 300 

o
C for 4 h (red line). 

 

As demonstrated by XRD results, TiO2M is still amorphous (black line) after undergoing the hydrothermal 

treatment in the absence of ligands. 

The annealing treatment at 300 
o
C for 4 h transfers the amorphous TiO2 to anatase crystalline (red line). 
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Fig. S5 Thermogravimetric analyses (TGA) of MIL-125 and MIL-125-NH2. 
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Fig. S6 SEM of 30%-MIL-125-NH2/TiO2M annealed for (a, d) 0.5 h, (b, e) 1 h, (c, f) 2 h, (g, j) 4 h, (h, k) 6 h and (i, l) 

8 h at 300 C in air. 

 

SEM images show that the plate-like MOFs on the membrane surface and on the channel walls maintain 

their typical structure after a 0.5-4 h thermolysis treatment (Fig. S6). However, a further increase in 

thermolysis time to 6 h (Fig. S6h, k) or 8 h (Fig. S6i, l), leads to a collapse of the MOF nanocrystals. 

 

  



 

 

Fig. S7 FTIR of 30%-MIL-125-NH2 before and after annealing at 300 °C for 4 h in air. 
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Fig. S8 (a) N2 sorption isotherms of 30%-MIL-125-NH2/TiO2M before and after linker thermolysis. (b) Pore size 

distributions of 30%-MIL-125-NH2 before and after thermolysis treatment. (c) N2 sorption isotherms of 

30%-MIL-125-NH2 before and after linker thermolysis. 

 

Both 30%-MIL-125-NH2 and hpMIL-125 (Fig. S8c) exhibit similar sorption isotherms containing a combination 

of type I and IV sorption curves. The high adsorption amount of N2 occurring at a low relative pressure 

demonstrates the presence of micropores.
1-3

 Meanwhile, the hysteresis at a relative pressure of ~0.5, 

associating with capillary condensation of N2 within mesopores, demonstrates the presence of a 

mesostructure in 30%-MIL-125-NH2 and hpMIL-125 samples.
4,5

 The ratio of meso- to micropore volume on 

hpMIL-125 proportionally increases as indicated by the increased intensity at a pore size of ~4.5 nm (Fig. S8b). 

The mesopores in 30%-MIL-125-NH2/TiO2M can be explained by the presence of nonrigid aggregates of 

plate-like nanocrystals.
6 

The specific surface area of 30%-MIL-125-NH2 is 467 m
2
 g1

, and it decreases to 255 m
2
 

g1
 after the thermolysis treatment. 

 

  



 

 

Fig. S9 XRD patterns of 30%-MIL-125-NH2 before and after annealing at 300 °C in air for 4 h. 
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Table S1 Zeta potentials 

Sample Zeta potential (mV) 

TiO2M 11.1 

30%-MIL-125-NH2/TiO2M 24.8 

hpMIL-125/TiO2M 4.06 

Au@hpMIL-125/TiO2M 28.6 

Au@hpMIL-125(CytC)/TiO2M 17.7 

 

The as-formed TiO2M has a negative surface charge (zeta potential, −11.1 mV). Owing to the presence of 

carboxyl groups on BDC and BDC-NH2, the zeta potential negatively shifts to −24.8 mV by forming 

30%-MIL-125-NH2/TiO2M. Upon the removal of MIL-125-NH2 by thermolysis, the hpMIL-125/TiO2M provides 

fewer negative charges (zeta potential, −4.08 mV). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. S10 SEM of hpMIL-125/TiO2M soaked in water for different periods (a, b) 4 h, (c, d) 24 h, (e, f) 4 d, (g, h) 10 

d. 

  

 



 

Fig. S11 XRD patterns of anatase TiO2M (annealed at 300 
o
C for 4h) and as-proposed hpMIL-125/TiO2M after 

soaking in DI water at room temperature for 10 days.  

 

Compared with the XRD patterns of freshly prepared anatase TiO2M (Fig. S4) and hpMIL-125/TiO2M (Fig. 1l), 

it can be concluded that these membranes maintain their crystal structures after the long-time soaking in 

water. 

 

 

 

 

 

 

 



 

Fig. S12 UV-Vis absorption spectra of CytC in the remaining solution after incubation treatment with 3 mg (a) 

hpMIL-125/TiO2M and (b) 30%-MIL-125-NH2/TiO2M in different time. (c) UV-Vis adsorption spectra of CytC in 

the remaining solution after incubation for 12 h with different samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S13 Adsorption capacity of CytC on amorphous TiO2M, anatase TiO2M, 30%-MIL-125-NH2/TiO2M, and 

hpMIL-125/TiO2M. 
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Fig. S14 CD spectrum of a) 30%-MIL-125-NH2(CytC)/TiO2M and b) 30%-MIL-125-NH2(CytC)co/TiO2M before and 

after incubating at 55 C for 2 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S15. UV−vis diffuse reflectance spectra of CytC (CytC mixed with BaSO4 to press tablet), 

30%-MIL-125-NH2(CytC)/TiO2M, 30%-MIL-125-NH2(CytC)co/TiO2M and hpMIL-125/TiO2M. A high-purity BaSO4 

was used as the background. 
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Fig. S16 Effect of Au loading amount on H2O2 generation. UV-Vis spectra of APTS in the presence of HRP and 

Au@hpMIL-125/TiO2M under irradition for different time. The concentrations of HAuCl4 are (a) 0.1 mM, (b) 

0.25 mM, (c) 0.5 mM, (d) 1 mM, and (e) 5 mM.  

 

The as-prepared Au@hpMIL-125/TiO2M (3 mg in 1 mL H2O) was irradiated with a 30 W white LED light in a 

quartz cuvette. After irradiation, 1.5 mM ABTS and 0.1 mg/mL HRP were added and then incubated at 37 C 

for 20 min. The absorption spectra of ABTS at 734 nm were recorded using a spectrometer. 

 

  



 

 

Fig. S17 (a) UV/visible diffuse reflectance spectra of TiO2M, hpMIL-125/TiO2M, and Au@hpMIL-125/TiO2M. (b) 

UV-Vis absorption spectra of Au NPs peeled from Au@hpMIL-125/TiO2M. Inset image: the corresponding 

digital photographs of the Au NPs solution. 

 

Figure S16 b shows the UV-Vis adsorption spectrum of Au NPs which are achieved by immersing the 

Au@hpMIL-125/TiO2M sample in a 5% HF solution at 60 
o
C for 2 h to resolve hpMIL-125/TiO2M. The UV-vis 

absorption spectrum (Fig. S16b) and digital image (inset of Fig. S16b) verify the typical SPR characters of the 

AuNPs on the sample. 
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Fig. S18 Photocatalytic degradation of AO7 in the presence of different photocatalysts. AO7: 25 μM; light 

source: 30W LED (400-600 nm). 

 

Owing to the wide band-gap of TiO2 and ML-125, bare TiO2M and hpMIL-125/TiO2M samples only present 

poor photocatalytic activities in the visible-light irradiation (400-600 nm LED). After AuNPs grafting, the 

resulted Au@hpMIL-125/TiO2M sample shows an enhanced photocatalytic activity in the visible-light range. 

This improvement can be attributed to the SPR of AuNPs, by which the hot electrons generated by the excited 

SPR state are injected into the CB of TiO2. 
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Fig. S19 SEM images of Au NP-modified hpMIL-125/TiO2M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S20 TEM images of Au NP-modified hpMIL-125/TiO2M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S21 I-V properties of bare TiO2M (black line), 30%-MIL-125-NH2 (red line), annealed at 300 C for 4 h (blue 

line), modified with Au NPs (green line), and encapsulation of CytC (purple line). 
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Fig. S22 I-V properties of (a) TiO2M-CytC and (b) 30%-MIL-125-NH2(CytC)/TiO2M in 1.0 mM KCl after irradiating 

for different periods by LED. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1.0 -0.5 0.0 0.5 1.0
-20

-10

0

10

20
 

 

C
u
rr

e
n

t 
(

)

Voltage (V)

 0 min

 3 min

 5 min

 10 min

 20 min

-1.0 -0.5 0.0 0.5 1.0
-20

-10

0

10

20

Voltage (V)

C
u
rr

e
n

t 
(

)

 0 min

 3 min

 5 min

 10 min

 20 min

 

 

55 oC

TiO2M-CytC 30%-MIL-125-NH2(CytC)/TiO2M

55 oC
a b



 
Fig. S23 I-V properties of freshly prepared Au@hpMIL-125(CytC)/TiO2M samples with different irradiation time. 

Before the ionic current measurements, the samples were first pretreated at different temperatures for 2 h: (a) 

20
 
C, (b) 37 C, (c) 55 C, (d) 65 C, (e) 80 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S24 I-V properties of Au@hpMIL-125(CytC)/TiO2M samples with different irradiation time after storage for 

7 days at room temperature. Before the ionic current measurements, the samples were first pretreated at 

different temperatures for 2 h: (a) 20
 
C, (b) 37 C, (c) 55 C, (d) 65 C, (e) 80 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S25 I-V properties of Au@hpMIL-125(CytC)/TiO2M samples with different irradiation time after storage for 

21 days at room temperature. Before the ionic current measurements, the samples were first pretreated at 

different temperatures for 2 h: (a) 20
 
C, (b) 37 C, (c) 55 C, (d) 65 C, (e) 80 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S26 (a, b, c) Parallel I-V profiles of three different Au@hpMIL-125(CytC)/TiO2M samples for constructing a 

cascade reaction. (d) Corresponding calibration plots (the change in current at +1.0 V) of the proposed sensing 

device. All the samples were activated at 37 
o
C for 2 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S27. (a-e) I-V properties of Au@hpMIL-125(CytC)/TiO2M at different cycles. (f) ΔI values of 

Au@hpMIL-125(CytC)/TiO2M at +1.0 V before and after cascade reactions in different application cycles. The 

sample was activated at 55 
o
C for 2 h before I-V property measurements. 
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