Supporting Information

Defect engineering via the F-doping of β-MnO₂ cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries

Seoyeong Kim^{a,1}, Bon-Ryul Koo^{b,c,1}, Yong-Ryun Jo^d, Ha-Rim An^e, Young-Geun Lee^a, Chun

Huang^{b,c*}, Geon–Hyoung An^{a,f **}

^aDepartment of Energy Engineering, Gyeongsang National University, Jinju, Republic of Korea

Rorea

^bDepartment of Engineering, King's College London, London WC2R 2LS, UK

^cDepartment of Materials, University of Oxford, Oxford, OX1 3PH, UK

^dAdvanced Photonics Research Institute (APRI)

eCenter for Research Equipment, Korea Basic Science Institute, Daejeon 34133,

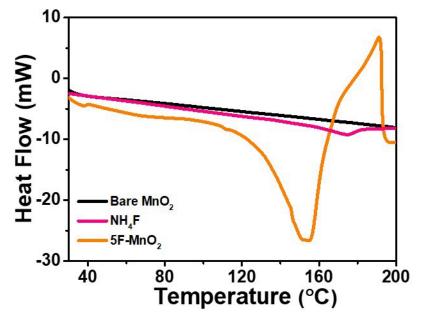
Republic of Korea

^fFuture Convergence Technology Research Institute, Gyeongsang National University, Jinju,

Republic of Korea

^{*}Corresponding author.

E-mail address: ann.huang@kcl.ac.uk (C. Huang)


^{**} Corresponding author.

E-mail address: ghan@gnu.ac.kr (G.-H. An)

¹These authors contributed equally to this work.

Samples	$S_{BET} (m^2 g^{-1})$	Total pore volume (cm ³ g ⁻¹)
Bare MnO ₂	14.86	0.08
4F-MnO ₂	26.88	0.09
5F-MnO ₂	79.37	0.15
6F-MnO ₂	53.84	0.11

Table S1. Comparison of specific surface area and pore volume among all samples.

Fig. S1. (a) DSC curve of bare MnO_2 , NH_4F , and $5F-MnO_2$ measured in range from room temperature to 200 °C of air atmosphere.

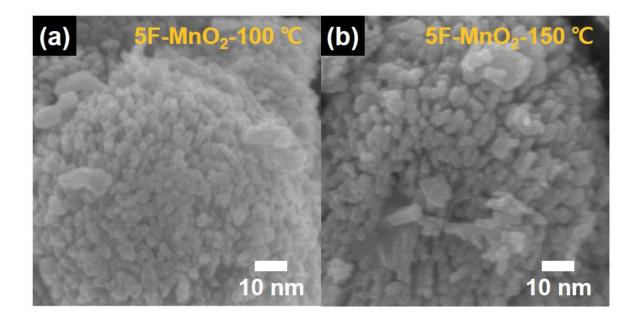


Fig. S2. High-magnification SEM images of $5F-MnO_2$ obtained at different calcination temperature of (a) 100 °C and (b) 150 °C.

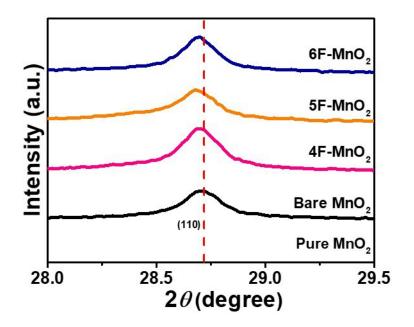


Fig. S3. Enlarged XRD patterns of all samples.

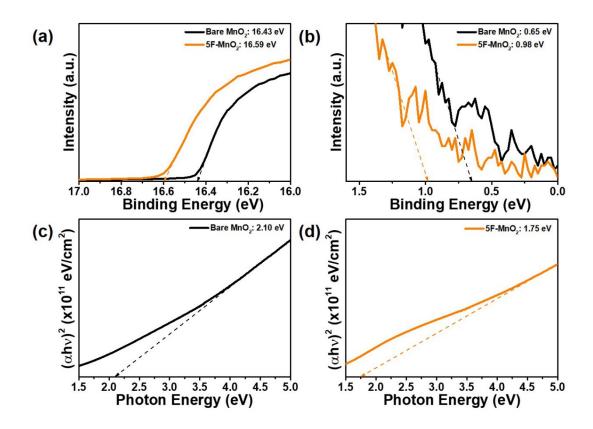


Fig. S4. (a) UPS spectra, (b) VBM spectra, and (c and d) curve of $(\alpha hv)^2$ versus photon energy of bare MnO₂ and 5F-MnO₂.

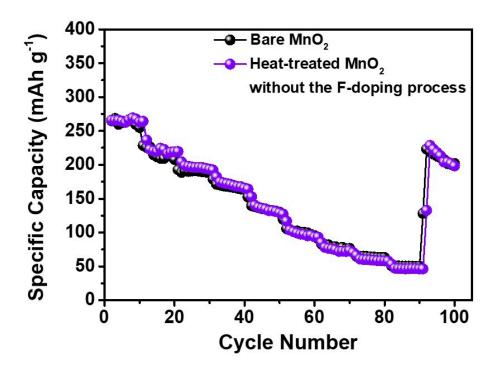


Fig. S5. Comparison of the rate performances between bare MnO_2 and heat-treated MnO_2 without the F-doping process.