Supporting information

Dual Lithium Storage of Pt electrode: Alloying and Reversible Surface Layer

Yunok Kim¹, Woosung Choi¹, Ok-Hee Kim², Hyunyoung Park¹, Soyeong Yun¹, Ranjith Thangavel¹, Yong-Hun Cho^{3*}, and Won-Sub Yoon^{1*}

¹Department of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea

² Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea

³ Department of Chemical Engineering, Kangwon National University, Samcheok 245-711, South Korea

* Corresponding Author E-mail: yhun00@kangwon.ac.kr; wsyoon@skku.edu

Figure S1. Voltage profile of the uncoated Pt electrode (left), and passivation coated Pt electrode (right) with the potential window from 0.001 to 4.0 V *vs.* Li/Li⁺ upon the 30 cycles.

Figure S2. The *ex situ* X-ray photoelectron spectroscopy obtained from the Pt electrode during the 2^{nd} cycles.

	First lithiation	
	Theoretical potential	Experimental value
$Pt \to Li_2Pt$	0.8185 V	0.1055 V (0.7862 V after 2cyc)
	First delithiation	
	Theoretical potential	Experimental value
$Li_2Pt \to LiPt$	0.4167 V	0.5559 V
$LiPt \rightarrow Li_{0.5}Pt$	1.1445 V	1.0594 V
$Li_{0.5}Pt \to Pt$	1.2961 V	1.4111 V

Table S1. Theoretical potential of the Pt electrode during the lithiation (Pt \rightarrow Li₂Pt), and delithiation (Li₂Pt \rightarrow LiPt \rightarrow Li_{0.5}Pt \rightarrow Pt).

The final energy values of each compound of Pt, $Li_{0.5}Pt$, LiPt, Li_2Pt , and bcc Li obtained through the generalized gradient approximation (GGA) method were utilized.¹ And referring to the following formula proposed by Urban et al.,² the theoretical potential of stepwise reaction constituting the lithiation/delithiation process of the Pt electrode are calculated and compared with the experimental values.

$$V = -\frac{E(Li_{x_2}Pt) - E(Li_{x_1}Pt) - (x_2 - x_1)E(Li^{bcc})}{(x_2 - x_1)F}$$

V: Theoretical redox potential of specific reaction.

 $E(Li_{x_2}Pt)$, $E(Li_{x_1}Pt)$, $E(Li^{bcc})$: Internal energies of the lithiated, delithiated Pt phase, and metallic Li.

 x_2 : Amount of Li at the lithiated state.

 x_1 : Amount of Li at the delithiated state.

F: Faraday constant.

Reference

- A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson and G. Ceder, *Phys. Rev. B*, 2011, **84**, 045115.
- 2 A. Urban, D.-H. Seo and G. Ceder, *npj Comput. Mater.*, 2016, **2**, 16002.