Supporting Information

Mixed-Valent Vanadium oxide Cathode with Ultrahigh Rate

Capability for Aqueous Zinc-Ion Battery

Shenglong Li,^a Xiujuan Wei,^{*a} Haopeng Chen,^a Guoyong Lai,^a Xuanpeng Wang,^{ab} Shaojian Zhang,^a Shuxing Wu,^a Weiting Tang^a and Zhan Lin ^{*a}

^aGuangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. ^bDepartment of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China

Figure S1. EPR spectra of $V_{10}O_{24}$ ·nH₂O and VO₂ with the giso-factor 1.96.

Figure S2. The XRD pattern of $V_{10}O_{24}$ ·nH₂O-annealed composite.

Figure S3. The TG curve of $V_{10}O_{24}$ ·nH₂O-annealed composite.

Figure S4. SEM images of (a) as-prepared VO₂ and (b) $V_{10}O_{24}$ ·nH₂O-annealed.

Figure S5. The corresponding height profiles of individual nanoribbons taken along the red line in Figure 2e.

Figure S6. Charge-discharge profiles for the $V_{10}O_{24}$ ·nH₂O electrode at different cycles at 0.2 A g⁻¹.

Figure S7. Long cycling performance of $V_{10}O_{24}$ ·nH₂O, $V_{10}O_{24}$ ·nH₂O-annealed and VO₂ at 10 A g⁻¹ for 3000 cycles.

Figure S8. (a) Charge–discharge GITT curves at a current density of 0.1 A g^{-1} . (b) the corresponding Zn^{2+} diffusion coefficient of $V_{10}O_{24}$ ·nH₂O-annealed electrode.