Supporting Information

Rose-like, ruthenium-modified cobalt nitride nanoflowers grown *in situ* on an MXene matrix for efficient and stable water electrolysis

Liang Yan, ^{a,#,*} and Bing Zhang^{b,#}

^a School of Chemistry and Materials Engineering, Guangdong Provincial Key
Laboratory of Electronic Functional Materials and Devices, Huizhou University, No.
46 Yanda Road, Huizhou, 516007, China.

^b School of Materials and Energy, Guangdong University of Technology, No. 100
Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006,
China.

*E-mail: yanliang@hzu.edu.cn (L. Yan)

[#]These authors contributed equally to this work.

Experimental section

Materials

Titanium aluminum carbide (Ti₃AlC₂, \geq 98%) was purchased from Foshan Xinxi Technology Co., Ltd (Foshan, China). Cobalt (II) nitrate hexahydrate (Co(NO₃)₂·6H₂O), N-methyl pyrrolidone (NMP), urea (CH₄N₂O) and ethanol (C₂H₅OH, >99.7%) were obtained from Guangzhou Chemical Reagent Factory (Guangzhou, China). Pt/C (20 wt%), RuO₂, RuCl₃ and Nafion solution (5 wt%) were purchased from Sigma-Aldrich. Carbon papers (CP) were purchased from Toray Industries, Inc. (Tokyo, Japan). All chemicals and materials were used as purchased without further purification.

Synthesis of $Ti_3C_2T_x$ MXene nanosheets

The Ti₃C₂T_x MXene was synthesized by etching Al layer from Ti₃AlC₂ with a mixture of LiF and HCl. Specifically, 2.0 g LiF was added to 40 mL of 9.0 M HCl by stirring for several minutes. Subsequently, 1.0 g Ti₃AlC₂ powder was slowly added into the above solution. After etching for 24 h at 35 °C in water bath under magnetic stirring, the multilayer Ti₃C₂T_x MXene was washed and centrifuged with deionized water for several times until the pH of the supernatant was approximately 6. Next, the obtained sediment was dispersed in 200 mL of deionized water and kept under bath sonicated for 1 h under N₂ gas protection. The dark green supernatant containing monolayer or few-layer Ti₃C₂T_x MXene nanosheets was collected by centrifuging for 1 h at 3500 rpm. The obtained Ti₃C₂T_x MXene solution was reserved at 0 °C in the refrigerator followed by freeze-drying before use.

Synthesis of Ru- $CoN/Ti_3C_2T_xMX$ ene

The Ru-Co LDH/Ti₃C₂T_x MXene was synthesized through a simple oil bath method by using Co(NO₃)₂·6H₂O, RuCl₃, and Ti₃C₂T_x MXene as the precursors for the in situ growth Ru-Co LDH nanoflowers on the surface of Ti₃C₂T_x MXene. Typically, 0.2 mmol Co(NO₃)₂·6H₂O, RuCl₃ with different contents (0, 0.022, 0.05, and 0.086 mmol RuCl₃ match to 0, 10%, 20%, and 30%, respectively), and 2 mmol urea were dissolved in 20 mL of Ti₃C₂T_x MXene/NMP dispersion (3 mg mL⁻¹). The above mentioned solution was then refluxed at 100 °C for 5 h in a three-necked flask under stirring in N₂ flow. The final Ru-Co LDH/Ti₃C₂T_x MXene was obtained by centrifugation washed using deionized water and ethanol for five times each followed by freeze-drying. Subsequently, the Ru-Co LDH/Ti₃C₂T_x MXene precursor was placed at the center of a furnace tube and then heated to 380 °C at the rate of 5 °C min⁻¹ and maintained at this temperature for 2 h under a flowing NH₃ atmosphere. Finally, the resulting product Ru-CoN/Ti₃C₂T_x MXene was obtained. For comparison, the bare CoN was prepared by similar approach except that pristine Co LDH instead of Co LDH/Ti₃C₂T_x MXene was used as the precursor.

Materials characterization

The morphology and nanostructure of samples were characterized with fieldemission scanning electron microscopy (FESEM, Hitachi SU8220) and transmission electron microscopy (TEM, FEI Talos F200S) coupled with energy dispersive X-ray (EDX) spectroscopy. Powder X-ray diffraction (XRD) patterns were recorded using Xray diffractometer (D8 Advance, Bruker) with a Cu k α radiation source ($\lambda = 0.1541$ nm) at a scan rate of 8° min⁻¹. X-ray photoelectron spectra (XPS) were performed with a Thermo Fischer ESCALAB 250Xi spectrometer with Al k α radiation source. Raman spectrum were recorded on a LabRAM HR Evolution (Horiba Jobin Yvon, France) using 532 nm laser source.

Electrochemical measurements

All electrochemical measurements were carried out at room temperature in a standard three-electrode cell controlled by PGSTAT302N potentiostat/galvanostat (Metrohm Autolab, Netherlands) electrochemical workstation. A graphite rod and a reversible hydrogen electrode (RHE) and 1.0 M KOH were used as the counter electrode and reference electrode, respectively. A catalyst ink was prepared by ultrasonically dispersed the mixture of 5 mg of the sample, 10 µL of 5 wt% Nafion solution and 990 μ L of ethanol for at least 1 h. Then 10 μ L of the catalyst ink was carefully deposited on the surface of a glassy carbon (GC) rotating disk electrode (RDE) with a diameter of 5 mm, and dried naturally. Before and during the HER or OER test, freshly prepared 1.0 M KOH solution was bubbled with Ar or O₂ flow, respectively. After twenty CV scans, the linear sweep voltammetry (LSV) was obtained at a rotating rate of 1600 rpm with a scan rate of 5 mV s⁻¹. All polarization curves were corrected with 90% *iR* compensation. The double-layer capacitances (C_{dl}) were determined by CV method in the non-faradaic potential region with scan rates from 10 to 90 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was tested in a frequency range from 100 kHz to 0.1 Hz by applying an AC voltage of 5 mV amplitude. The stability tests were carried out under constant current densities of -10 or 10 mA cm⁻² for HER or OER, respectively. For the twoelectrode electrolysis, the as-prepared Ru-CoN/Ti₃C₂T_x MXene was used as both the anode and cathode.

Fabrication of Ru-CoN/Ti₃C₂T_x MXene/CP, Pt/C/CP, and RuO₂/CP electrodes

Ru-CoN/Ti₃C₂T_x MXene/CP was prepared by drop-casting method. Typically, 2 mg Ru-CoN/Ti₃C₂T_x MXene was dispersed in 0.99 mL ethanol with 10 μ L 5wt% of Nafion solution, and the mixture solution was subsequently ultrasonically at least 30 min to form homogeneous ink. Then, the ink was drop coating onto a CP (1 x 1 cm²). The Pt/C/CP and RuO₂/CP electrodes were also prepared through the same procedure.

Figure S1. XRD pattern of Ru-Co LDH/Ti₃C₂T_x MXene.

Figure S2. SEM image of $CoN/Ti_3C_2T_x$ MXene.

Figure S3. SEM image of bare CoN.

Figure S4. XRD pattern of bare CoN.

Figure S5. Overall XPS spectra of Ru-CoN/Ti₃C₂T_x MXene.

Figure S6. High-resolution XPS spectra of Ti 2p for Ru-CoN/Ti₃C₂T_x MXene.

Figure S7. High resolution XPS spectrum of O 1s for Ru-CoN/Ti₃C₂T_x MXene.

Figure S8. HER polarization curves of the CoN/Ti₃C₂T_x MXene with different Ru contents.

Figure S9. CV curves of (a) Ru-CoN/Ti₃C₂T_x MXene, (b) CoN/Ti₃C₂T_x MXene and (c) CoN with scan rates of 10, 30, 50, 70 and 90 mV s⁻¹ in 1.0 M KOH. (d) Plots of the capacitive currents at 0.15 V as a function of scan rate for Ru-CoN/Ti₃C₂T_x MXene, CoN/Ti₃C₂T_x MXene, and CoN.

Figure S10. SEM image of Ru-CoN/Ti₃C₂T_x MXene after HER test.

Figure S11. XRD pattern of Ru-CoN/Ti₃C₂T_x MXene on CP after HER test.

Figure S12. Raman spectra of Ru-CoN/Ti₃C₂T_x MXene before and after HER test.

Figure S13. N 1s XPS spectra of Ru-CoN/Ti $_3C_2T_x$ MXene before and after HER test.

Figure S14. High-resolution XPS spectra of (a) Co 2p, (b) Ru 3d + C 1s, (c) Ti 2p, and (d) O 1s for Ru-CoN/Ti₃C₂T_x MXene before and after HER test.

Figure S15. OER polarization curves of the $CoN/Ti_3C_2T_x$ MXene with different Ru contents.

Figure S16. CV curves of (a) Ru-CoN/Ti₃C₂T_x MXene, (b) CoN/Ti₃C₂T_x MXene and (c) CoN with scan rates of 10, 30, 50, 70 and 90 mV s⁻¹ in 1.0 M KOH. (d) Plots of the capacitive currents at 0.95 V as a function of scan rate for Ru-CoN/Ti₃C₂T_x MXene, CoN/Ti₃C₂T_x MXene and CoN.

Figure S17. SEM image of Ru-CoN/Ti₃C₂T_x MXene after OER test.

Figure S18. High resolution Co 2p XPS spectra of the Ru-CoN/Ti₃C₂T_x MXene before and after the OER test.

Figure S19. High resolution O 1s XPS spectra of Ru-CoN/Ti₃C₂T_x MXene before and after OER test.

Figure S20. High resolution N 1s XPS spectra of the Ru-CoN/Ti₃C₂T_x MXene before and after the OER test.

Figure S21. Raman spectra of the Ru-CoN/Ti₃C₂T_x MXene before and after the OER

test.

Figure S22. XRD pattern for Ru-CoN/Ti₃C₂T_x MXene@CP electrode after the OER

test.

Tafel slope Catalyst η (mV) at Reference 10 mA cm⁻² mV dec⁻¹ Ni₃FeN-NPs 158 42 Adv. Energy Mater. 2016, 6, 1502585 109 NiMoN/CC 95 Adv. Energy Mater. 2016, 6, 1600221 NC@CuCo2Nx/CF 105 76 Adv. Funct. Mater. 2017, 27, 1704169 Ni₃N/CMFs/Ni₃N 115 52.1 J. Mater. Chem. A 2017, 5, 9377 ACS Appl. Mater. Interfaces 2018, 10, 7134 Co_{5.47}N NP@N-PC 149 86 Co-Ni₃N/CC 194 156 Adv. Mater. 2018, 30, 1705516 Ni₃FeN/r-GO 94 90 ACS Nano 2018, 12, 245 Co₃O₄-Co₄N PNSNs/HCC 90 57.8 J. Mater. Chem. A 2019, 7, 775 Ni₃N 133 103 ACS Catal. 2019, 9, 9332 Adv. Funct. Mater. 2019, 29, 1805893 h-MoN@BNCNT 118 59 Ni₃N/NF 120 ACS Appl. Mater. Interfaces 2019, 11,13168 110 NiCoN/C 103 NA Adv. Mater. 2019, 31, 1805541 P,W-Co₃N NWA/NF 41 40 Nat. Commun. 2020, 11, 1853 P-Fe₃N@NC NSs/IF 102 68.59 Small 2020, 16, 2001980 Ru-Mo₂N 16 35 Nano Energy 2020, 75, 104981 P-MoP/Mo₂N 89 78 Angew. Chem. Int. Ed. 2021, 60, 6673 Ni₃N-V₂O₃@NF 57 50 Appl. Catal. B: Environ. 2021,286, 119882 Ni₃N-Co₃N PNAs/NF Angew. Chem. Int. Ed. 2021, 60, 5984 43 35.1 Ru-CoN/Ti₃C₂T_x MXene 48.8 44.1 This work

Table S1. A comparison of HER performances of Ru-CoN/Ti₃C₂T_x MXene with recently reported TMN-based electrocatalysts in 1.0 M KOH.

Catalyst	n (mV) at	Tafel slope	Reference
Cuturyst	10 mA cm^{-2}	mV dec ⁻¹	Reference
Co ₄ N NW/CC	257	44	Angew. Chem. Int. Ed. 2015, 54, 14710
TiN@Ni ₃ N	350	93.7	J. Mater. Chem. A 2016, 4, 5713
Ni ₃ FeN-NPs	280	46	Adv. Energy Mater. 2016, 6, 1502585
FeCo-Co ₄ N/N-C	280	40	Adv. Mater. 2017, 29, 1704091
Ni ₃ N/CMFs/Ni ₃ N	273	41.54	J. Mater. Chem. A 2017, 5, 9377
Co _{5.47} N NP@N-PC	248	54	ACS Appl. Mater. Interfaces 2018, 10, 7134
Co-Ni ₃ N/CC	307	57	Adv. Mater. 2018, 30, 1705516
Mn ₃ N ₂ /NF	270	101	Angew. Chem. Int. Ed. 2018, 57, 698
Ni ₃ FeN/r-GO	270	54	ACS Nano 2018, 12, 245
Ni ₃ N-NiMoN/CC	277	118	Nano Energy 2018, 44. 353
Ni ₃ N/BP-AG	233	42	Small 2019, 15, 1901530
Ni ₂ Co-N	214	53	Appl. Catal. B: Environ. 2020, 270, 118889
NiFeMnN/Ti ₃ C ₂ MXene	300	60	Nano Lett. 2020, 20, 2892
P-Fe ₃ N@NC NSs/IF	270	89.72	Small 2020, 16, 2001980
S-Ni ₃ FeN/NSG	260	76	Appl. Catal. B: Environ. 2020, 274, 119086
Co ₄ N-CeO ₂ /GP	239	37.1	Adv. Funct. Mater. 2020, 30, 1910596
Ni ₃ N/Ni@Ni ₃ N@CC	229	55	Nano Energy 2020 , 78, 105355
2D CoNC@Co2N HS	217	66	Adv. Energy Mater. 2020 , 10, 2002214
Ru-CoN/Ti ₃ C ₂ T _x MXene	238	68	This work

Table S2. A comparison of OER performances of Ru-CoN/Ti₃C₂T_x MXene with recently reported TMN-based electrocatalysts in 1.0 M KOH.

Catalyst	Potential (V) at 10 mA cm ⁻²	Reference
Fe ₂ Ni ₂ N/NF	1.65	Inorg. Chem. Front. 2016, 3, 630
TiN@Ni ₃ N	1.64	J. Mater. Chem. A 2016, 4, 5713
Ni ₃ N/CMFs/Ni ₃ N	1.59	J. Mater. Chem. A, 2017, 5, 9377
NiMoN	1.563	J. Mater. Chem. A, 2017, 5, 13648
CoN-Ni ₃ N/CC	1.56	J. Mater. Chem. A, 2018, 6, 4466
Ni ₃ FeN/r-GO	1.60	ACS Nano 2018 , 12, 245
Co_4N - $VN_{1-x}O_x@CC$	1.64	Appl. Catal. B: Environ. 2019, 241, 521
FeOOH@Co4N/SSM	1.59	ACS Appl. Mater. Interfaces 2019, 11, 5152
WN-Ni(OH)2@CFP	1.705*	ACS Catal. 2020, 10, 13323
P-Fe ₃ N@NC NSs/IF	1.61	Small 2020, 16, 2001980
Co ₄ N@NC	1.561	ACS Energy Lett. 2020 , <i>5</i> , 692
FeOOH/Ni ₃ N	1.58	Appl. Catal. B: Environ. 2020, 269, 118600
Ni ₂ Co-N/CC	1.59	Appl. Catal. B: Environ. 2020, 270, 118889
SFCNF/Co1-xS@CoN	1.58	Small 2020, 16, 2002432
2D CoNC@Co2N HS-IN-CP	1.52	Adv. Energy Mater. 2020, 10, 2002214
Co/WN-600	1.51	J. Mater. Chem. A, 2020 , 8, 22938
Co ₄ N-CeO ₂ /GP	1.507	Adv. Funct. Mater. 2020, 30, 1910596
Ru-CoN/Ti ₃ C ₂ T _x MXene	1.52	This work

Table S3. Summary of recent reported representative of bifunctional TMN-basedcatalysts for overall water-splitting in 1.0 M KOH.

* Potential at 20 mA cm⁻²