Supporting Information

Bathocuproine as a cathode interlayer for nonfullerene organic solar cells with efficiency over 17\%

Tiefeng Liu, Lulu Sun, Cong Xie, Wen Wang, Fei Qin, Yinhua Zhou.

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
*Corresponding author. E-mail: yh_zhou@hust.edu.cn.

Experiment section

Materials

Material for active layer (PM6, Y6, IT-4F and $\mathrm{PC}_{71} \mathrm{BM}$) were purchased from Solarmer Materials Inc. PEDOT:PSS (Clevios PVP AI 4083, 1.3-1.7 wt.\% in water) was purchased from Xi'an Polymer Light Technology Corp. BCP (96\%) and PDINN (98\%) were purchased from Sigma-Aldrich and Solarmer Materials Inc respectively. Chloroform (99\%), chloronaphthalene (95\%) and methanol (99.8\%) were purchased from Sigma-Aldrich.

Device fabrication

First, the hole transporting layer PEDOT:PSS was deposited on ITO substrate (10 ohm sq ${ }^{-1}$) and annealed at $150{ }^{\circ} \mathrm{C}$ for 10 minutes to remove residual water. Then, the active layer was spin-coated on PEDOT:PSS and annealed at $100{ }^{\circ} \mathrm{C}$ for 10 minutes in N_{2}-filled gloveboxes. The active layer was prepared by dissolving donor and acceptor (7:8.4 mg) in 1 ml mixedsolvent (The volume ratio of chloroform and chloronaphthalene is 99.5:0.5.) and stirred for over 6 hours. The donor is PM6 and the acceptor is the mixture of Y 6 and $\mathrm{PC}_{71} \mathrm{BM}$ with different ratios (The weight ratio is from 1:1.2:0 to 1:0:1.2). Next, the CIL of BCP (0.5 mg in 1 ml methanol) or PDINN (1 mg in 1 ml methanol) was spin-coated on the active layer at speed of 3000 rpm without further annealing. Finally, top $\mathrm{Ag}(70 \mathrm{~nm})$ electrode was fabricated under a high vacuum ($<5 \times 10^{-7}$ Torr) through a shadow mask by thermal evaporating (Mini-spectros, Kurt J. Lesker). The effective active area is $4.1 \mathrm{~mm}^{2}$.

Characterization

$J-V$ curves of the cells were measured using a Keithley 2400 SourceMeter under $100 \mathrm{~mW} \mathrm{~cm}^{-2}$ AM1.5 solar simulator (Newport, Sol3A, 450 W xenon lamp). The measurement was performed in a N_{2}-fillerd glove box at the temperature of $25^{\circ} \mathrm{C}$. The light intensity of the light source was calibrated with a silicon photodiode (Hamamatsu, S1133-01). The scan rate was 0.2 $\mathrm{V} \mathrm{s}^{-1}$ and the dwell time was 0.1 s .

EQE test was characterized using a 150 W xenon lamp (Oriel) filtered with a monochromator (Cornerstone 74004) as a monochromatic light source.

Absorbance was measured with a UV-vis-NIR Spectrophotometer (UV3600, Shimadzu). The
concentration of acceptor is $0.1 \mathrm{mg} / \mathrm{ml}$ in chloroform. The weight ratio of acceptor to BCP is 5:1. The films were deposited by spin-coating the solvent at a speed of 2000 rpm and annealed at $100^{\circ} \mathrm{C}$ for 10 min .

XPS measurements were carried out with a spectrometer (AXIS-ULTRA DLD-600W) in the analysis chamber at a base pressure of $10^{-9} \mathrm{mbar}$. The data was collected with monochromatic $\mathrm{Al}(\mathrm{K} \alpha)$ radiation at $h v=1486.6 \mathrm{eV}$. All recorded peaks were corrected for electrostatic effects by setting the C-C component of the C 1s peak to 285 eV .

Work function was measured by Kelvin probe (KP-020, KP Technology). A highly ordered pyrolytic graphite with a work function of 4.6 eV was used as the reference sample.

The NMR spectra were collected on a Bruker Ascend 400 MHZ NMR spectrometer using deuterated chloroform as the solvent.

The mass spectrometry measurement was performed on an Agilent 1100 LC-MS Trap XCT System (Agilent Technologies, USA).

Figure S1. The changing of work function when using BCP and PDINN as CIL.

Figure S2. The morphology of BCP deposited on PM6:Y6 and PM6:Y6: $\mathrm{PC}_{71} \mathrm{BM}$ active layer.
(a)

(b)

(c)

(d)

Figure S3. The $J-V$ curves of the ternary OSC with the structure of ITO/PEDOT:PSS/PM6:Y6:IT4F/CIL/Ag, where the CIL is BCP or PDINN. The ratio of PM6:Y6:IT-4F is 1:1:0.2.

Figure S4. The $J-V$ curves of the ternary OSC with the structure of ITO/PEDOT:PSS/PM6:IT$4 \mathrm{~F}: \mathrm{PC}_{71} \mathrm{BM} / \mathrm{CIL} / \mathrm{Ag}$, where the CIL is BCP or PDINN. The ratio of PM6: IT-4F:PC ${ }_{71} \mathrm{BM}$ is $1: 1: 0.2$.

Figure S5. The (a) absorbance and (b) relevant optical photograph of IT-4F solution and a mixture of IT-4F and BCP.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of Y6, Y6 +BCP and BCP . The reagent is CDCl_{3}. The marked dash box is to show the intensity change of H at the position of marked " a " and " b " in the chemical structure of Y6.

Figure S7. Mass spectra of BCP.

Figure S8. The absorbance of (a) Y 6 and (b) $\mathrm{Y} 6: \mathrm{PC}_{71} \mathrm{BM}$ film after depositing BCP layer.
(a)

(b)

Figure S9. The (a) absorbance and (b) relevant optical photograph of PM6 solution and a mixture of PM6 and BCP.

Figure S10. The absorbance of BCP and PDINN.

