Supporting Information

Fast self-healing multifunctional polyvinyl alcohol nanoorganic composite hydrogel as building blocks for highly sensitive strain/pressure sensors

Wenhao Zhao, Dongzhi Zhang*, Yan Yang, Chen Du, Bao Zhang

College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

*Corresponding author: Dongzhi Zhang

E-mail address: dzzhang@upc.edu.cn

Tel: +86-532-86982928

Fax: +86-532-86983326

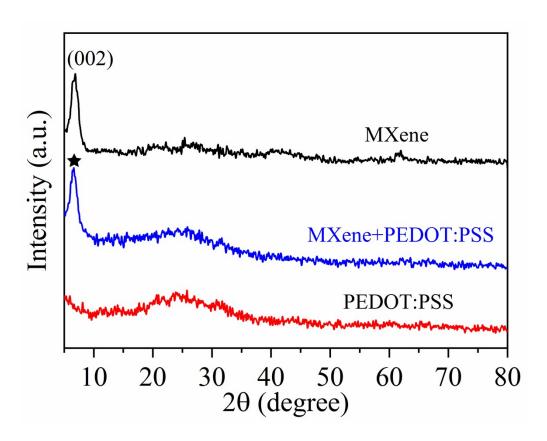


Fig. S1. XRD patterns of conductive fillers MXene and PEDOT:PSS.

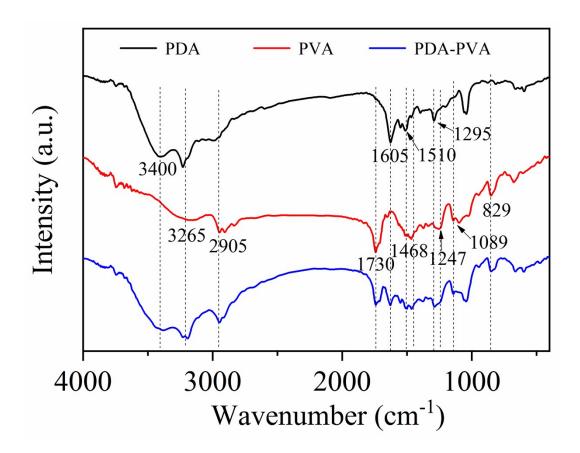
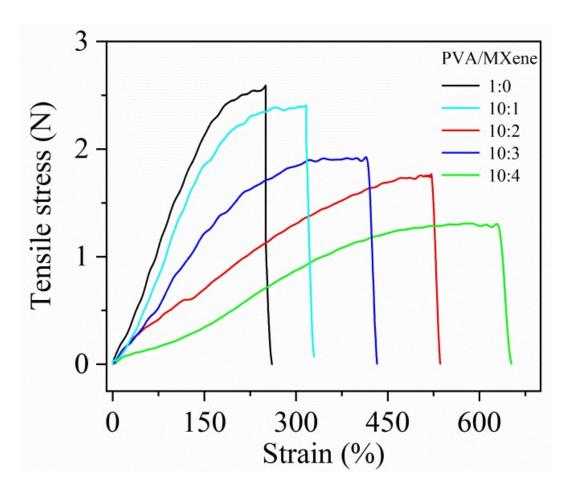
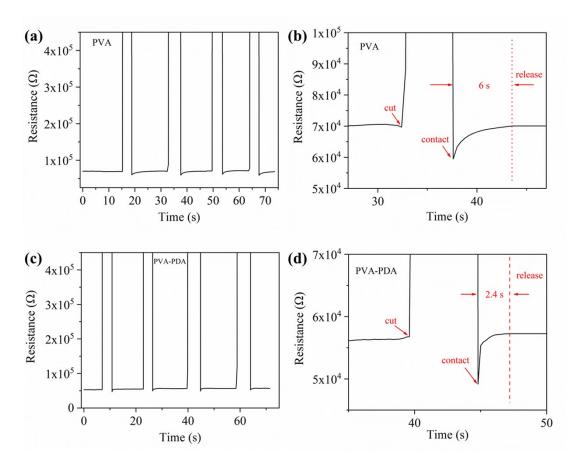
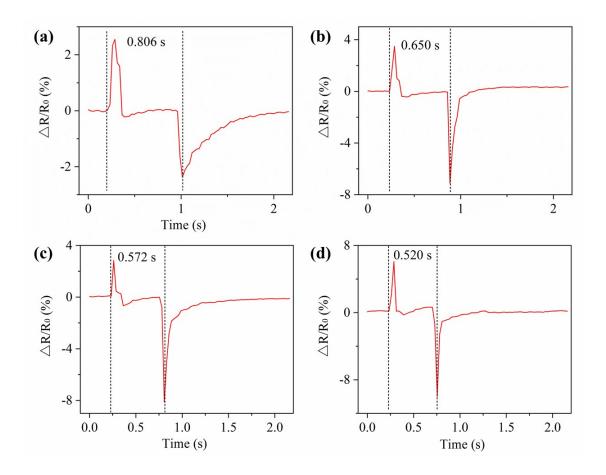


Fig. S2. FTIR spectrum of PDA, PVA and PDA-PVA.

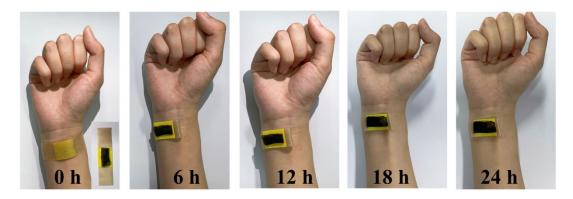

Fig. S3. Tensile fracture curves of hydrogels with different MXene contents.

Fig. S4. (a) Cut healing cycle of PVA hydrogel at the same location and (b) amplification of the self-healing process. (c) Cut healing cycle of PVA-PDA hydrogel at the same location and (d) amplification of the self-healing process.

Fig. S5. (a), (b), (c), (d) four different positions of the sphere through the hydrogel at different times.

Fig. S6. The hydrogel sensor was attached to the skin for 24 h to test its biocompatibility.

Fig. S7. Water contact angle test of PVA-MXene-PEDOT:PSS-PDA hydrogel.

 Table 1. Properties comparison with previous studies.

Materials	Working range (%)	Gauge factor	Self-healing	Refs
PVA/Gly/CB/CNT	643.2	2.01	\checkmark	[1]
HPC/PVA	975	0.984	×	[2]
PAA/PVA/Fe ³⁺ /CNT	550	1.61	\checkmark	[3]
PSBMA/PVA	300	1.5	×	[4]
Poly α-lipoic acid	300	1.46 (0–50%), 2.30 (50– 150%), 3.69 (150– 300%)	\checkmark	[5]
PDA/talc/PAM-KCl	50-1000%	0.69	$\sqrt{}$	[6]
PAM/PDMS/LiCl	40	0.84	×	[7]
PAA-rGO	500	1.32	\checkmark	[8]
PEDOT:PSS/Acrylic acid /PAAc	>100%	~1.1 at 100%	×	[9]
PVA-MXene-PEDOT:PSS-PDA	700	2.55	$\sqrt{}$	This paper

References

- [1] J.F. Gu, J.R. Huang, G.Q. Chen, L.X. Hou, J. Zhang, X. Zhang, X.X. Yang, L.H. Guan, X.C. Jiang and H.Y. Liu, Multifunctional poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature Sensor, *ACS Appl. Mater. Interfaces*, 2020, **12**, 40815-40827.
- [2] Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang, Z. Dai, K. Ji, H. Jiang, X. Chen and Y. Long, Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics, *Adv. Funct. Mater.*, 2019, **29**, 1806220.
- [3] G. Ge, W. Yuan, W. Zhao, Y. Lu, Y.Z. Zhang, W.J. Wang, P. Chen, W. Huang, W.L. Si and X.C. Dong, Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks, *J. Mater. Chem. A*, 2019, 7, 5949-5956.
- [4] Z. Wang, J. Chen, L. Wang, G. Gao, Y. Zhou, R. Wang, T. Xu, J. Yin and J. Fu, Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels, *J. Mater. Chem. B*, 2019, **7**, 24-29.
- [5] C. Dang, M. Wang, J. Yu, Y. Chen, S. Zhou, X. Feng, D. Liu and H. Qi, Transparent, highly stretchable, rehealable, sensing, and fully recyclable ionic conductors fabricated by one-step polymerization based on a small biological molecule, *Adv. Funct. Mater.*, 2019, **29**, 1902467.
- [6] X. Jing, H.Y. Mi, Y.J. Lin, E. Enriquez, X.F. Peng and L.S. Turng, Highly stretchable and biocompatible strain sensors based on mussel-inspired super-adhesive self-healing hydrogels for human motion monitoring, *ACS Appl. Mater. Interfaces.*, 2018, **10**, 20897-20909.

- [7] K. Tian, J. Bae, S.E. Bakarich, C. Yang, R.D. Gately, G.M. Spinks, M.I.H. Panhuis, Z. Suo and J.J. Vlassak, 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems, *Adv. Mater.*, 2017, **29**, 1604827.
- [8] X. Jing, H.Y. Mi, X.F. Peng and L.S. Turng, Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry, *Carbon N. Y.*, 2018, **136**, 63-72.
- [9] V.R. Feig, H. Tran, M. Lee and Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue, *Nat. Commun.*, 2018, **9**, 1-9.