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Fig. S1. (a) magnified and (b) integral Raman spectra for MC, MCC and MCCM anodes.
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Fig. S2. TGA curves of (a) MCCM and (b) MC and MCC samples from room temperature to 700
°C in an O, atmosphere.
Through the TGA analysis, the carbon content can be obtained. And the calculating process is
as following.
Take MCCM as an example, we assume the mole ratio of C: Mo = n. During the TGA test in
O, atmosphere, the corresponding oxidation reactions is as follows.
MoSe,/N,P-C@N-CcMoSe, + O, — MoOj3; + CO,
254+ 12n 144 44n

From this reaction, the weight loss ratio after calcination in O, atmosphere is as follows.

254+ 12n - 144
254 + 12n

Based on the weight loss of 61.03% measured from TGA, an equation can be given:



254+ 12n - 144
254+ 12n =61.03%

n=9.626

12 x 9.626
So the carbon content in MCCM is determined to be 31.25% (254 + 12 x9.626) And the

carbon contents of MC and MCC can be obtained through the same calculation process, based on

their weight losses, giving 53.26% and 61.85%, respectively.
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Fig. S3. N, adsorption-desorption isotherms curves of (a) MCCM, (b)MCC and (c) MC.
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Fig. S4. SEM images of (a) PPy-PMo,; and (b) PPy-PMo,,-PDA; TEM images of (¢) MC and (d-f)
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Fig. S5. Comparison of the XPS spectra for the MCCM, MCC and MC.

Fig. S6.TEM images of MCCM after discharge/charge cycling in (a)SIBs and (b) PIBs.
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Fig. S7. The dQ/dV curves transformed from the selected discharge/charge profiles for the (a-c)



SIBs and (d-f) PIBs at 1.0 A g*! (0.05 A g! for the initial cycle) for the MC, MCC and MCCM

samples.
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Fig. S8. Comparison of the sodium storage performances between this work and the some

reported MoSe,-based anodes.
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Fig. S9. Nyquist plots of fully charged cells after different cycles.
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Fig. S10. Comparison of the potassium storage performances between this work and some



reported MoSe,-based anodes.

(b).o-

——— Reduction, b= 0.979 &
-0.4 4 —— Oxidation, b = 0.905 >
-0.6 4
-0.8

log (peak current, mA)

T T T T T
-1.0 -08 -06 -04 -02 0.0
log (scan rate, mV s™)

T T
0.0 0.5 1.0 15 20 2.5 3
Voltage (V)

0.4 4 [ Diffusion
- Capacitive

I Diffusion controlled [l Capactive

Current (mA)
Contribution ratio (%)

-0.6 T T T T T 04
0.0 0.5 1.0 15 20 2.3 3.0 0.1 0.2 0.5 0.8 1.0
Voltage (V) Scan rate (mV s™)

Fig. S11. Kinetics analysis of the K*-ion storage behavior. (a) CV curves with varying scan rates,
(b) b-value analysis based on the relationship between the peak currents and the scan rates, (c)
capacitive and diffusion-controlled charge storage separation for the CV curve at 0.1 mV s, (d)
contribution ratio of the capacitive and diffusion-controlled charges at different scan rates for the
MCCM anode.

The kinetics analysis of the K*-ion storage is performed through capacity contribution analysis,
as shown in Fig. R8. Similar to the SIBs, CV of PIBs scans ranging from 0.1 to 1.0 mV s’!, exhibit
similar redox peaks, except for the peak shifting and intensity variation, as shown in Fig. S11a.
The b values of cathodic and anodic peaks are inferred to be 0.979 and 0.905 (Fig. S11b),
implying that the fast reaction kinetics is mainly promoted by pseudocapacitive behavior. As
illustrated in Fig. S11c, the capacitive contribution of MCCM is calculated to be 60.3% at 0.1 mV
s™!. Along with the scan rates increase, the capacitive contribution to the total capacity gradually

increases, and can reach 83.33% at scan rate of 1.0 mV s™! (Fig. S11d), which further proves the



fast electrochemical reaction kinetics is mainly promoted by the capacitive contribution.



