Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

- Figure S1. (a-c) Top view representations of Li_2S_4 diffusion pathways on the M-Nb₂O₅ (001) surface and (d) the corresponding energy profile.
- Figure S2. Digital photos of the multilayer-folded (a) and bended Nb₂O₅-NbC/CNF-PS (b) sample.
- Figure S3. SEM (a, b) and TEM (c) images of the pure CNF.
- Figure S4. SEM images of the Nb₂O₅-NbC/CNF.
- Figure S5. SEM images of the Nb₂O₅-NbC/CNF-PS.
- Figure S6. XRD patterns. (a) Nb₂O₅-NbC/CNF-PS pyrolized at 900°C or 1000°C. (b) Nb₂O₅-

NbC/CNF pyrolized at 900°C or 1000°C.

Figure S7. XPS of the Nb₂O₅-NbC/CNF-PS with or without PS.

Figure S8 Pore size distribution plots of the typical Nb₂O₅-NbC/CNF-PS and Nb₂O₅-NbC/CNF without PS.

Figure S9. TG plot of the C/S composite.

Figure S10. SEM (a, b), TEM (c) images and XRD pattern of the Nb₂O₅-NbC(L)/CNF-PS.

- Figure S11. Electrochemical performance of the Li–S batteries with Nb₂O₅-NbC(L)/CNF-PS. (a) Cycle stability, (b)Rate, and (c)The discharge-charge profiles.
- Figure S12. Cycle stability of the Li–S batteries without an interlayer.
- **Figure S13.** The discharge-charge profiles of the batteries with (a) Nb₂O₅-NbC/CNF-PS (b) Nb₂O₅-NbC/CNF and (c) CNF.
- Figure S14. SEM images after 100 cycles: Sulfur cathode (a) without and (b) with the typical Nb₂O₅-NbC/CNF-PS, lithium anode (c) without and (d) with the typical Nb₂O₅-NbC/CNF-PS.
- Figure S15. Electrochemical impedance spectroscopy (EIS) plots of Li-S batteries.
- Figure S16. CV curves of Li-S cells at various scan rates. (a) with CNF interlayer (b) without interlayer.
- Figure S17. CV curves of the symmetric cell employing Nb₂O₅-NbC/CNF-PS or CNF as electrode.
- Table S1. The adsorption energy of the representive LiPSs on the optimized configurations of Nb_2O_5 or NbC.
- Table S2. Conductivity of different samples measured by the four-point probe method.
- Table S3. Measured BET Surface Area, and the Pore Volume of different samples.
- **Table S4.** The slope of the curve $(Ip/v^{0.5})$.
- Table S5. Lithium ion diffusion coefficients.
- **Table S6.** Electrochemical performance of some representative recently-reported interlayer/modified

 separator containing heterostructures in the recently-reported literatures.
- Table S7. Electrochemical performance of some representative recently-reported Nb-relative catalysists in the recently-reported literatures.

Figure S1. (a-c) Top view representations of Li_2S_4 diffusion pathways on the M-Nb₂O₅ (001) surface and (d) the corresponding energy profile.

Note: The cyan, red, purple and yellow spheres represent Nb, O, Li, and S, respectively.

Figure S2. Digital photos of the typical Nb_2O_5 -NbC/CNF-PS: (a) the multilayer-folded. (b) the bended.

Figure S3. SEM (a, b) and TEM (c) images of the pure CNF.

Figure S4. SEM images of the Nb₂O₅-NbC/CNF.

Figure S5. SEM images of the typical Nb₂O₅-NbC/CNF-PS.

Figure S6. XRD patterns. (a) Nb₂O₅-NbC/CNF-PS pyrolized at 900°C or 1000°C. (b) Nb₂O₅-NbC/CNF pyrolized at 900°C or 1000°C.

Figure S7. XPS of the typical Nb₂O₅-NbC/CNF-PS and Nb₂O₅-NbC/CNF without PS.

Figure S8. Pore size distribution plots of the typical Nb₂O₅-NbC/CNF-PS and Nb₂O₅-NbC/CNF without PS.

Figure S9. TG plot of the C/S composite.

Figure S10. SEM (a, b), TEM (c) images and XRD pattern of the Nb₂O₅-NbC(L)/CNF-PS.

Figure S11. Electrochemical performance of the Li–S batteries with Nb₂O₅-NbC(L)/CNF-PS. (a) Cycle stability, (b)Rate, and (c)The discharge-charge profiles.

Figure S12. Cycle stability of the Li-S batteries without an interlayer.

Figure S13. The discharge-charge profiles of the batteries with (a) the typical Nb₂O₅-NbC/CNF-PS (b) Nb₂O₅-NbC/CNF and (c) CNF.

Figure S14. SEM images after 100 cycles: Sulfur cathode (a) without and (b) with the typical Nb₂O₅-NbC/CNF-PS, lithium anode (c) without and (d) with the typical Nb₂O₅-NbC/CNF-PS.

Figure S15. Electrochemical impedance spectroscopy (EIS) plots of Li-S batteries.

Figure S16. CV curves of Li-S batteries at various scan rates. (a) with CNF interlayer (b) without interlayer.

Figure S17. CV curves of the symmetric cell employing Nb_2O_5 -NbC/CNF-PS or CNF as electrode.

	Optimized configurations	$\begin{array}{c} E_{adsorption \ energy} \\ towards \ Li_2S_6 \\ (eV) \end{array}$	$\begin{array}{c} E_{adsorption\ energy}\\ towards\ Li_2S_4\\ (eV) \end{array}$
Nb ₂ O ₅ -O		-5.13	-6.07
NbC-C		-4.14	-5.94

Table S1. The adsorption energy of the representive LiPSs on the optimized configurations of Nb_2O_5 or NbC.

Table S2. Conductivity of different samples measured by the four-point probe method.

Samples	Nb ₂ O ₅ -NbC/CNF-PS	CNF
Conductivity (S cm ⁻¹)	1.42×10-2	3.13×10 ⁻³

Table S3. Measured BET Surface Area, and the Pore Volume of different samples.

Samples	DET surface	Micropore	Mesopore	Total pore
	area $(m^2 g^{-1})$	volume	volume	volume
		$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
Nb ₂ O ₅ -NbC/CNF-PS	62.63	0.013	0.074	0.087
Nb ₂ O ₅ -NbC/CNF	29.37	0.0098	0.045	0.055

Table S4. The slope of the curve $(I_p/v^{0.5})$.

Samples	C1	C2
Nb2O5-NbC/CNF-PS	0.38177	0.25608
CNF	0.18363	0.19771
Without interlayer	0.032485	0.13771

The Li ion diffusion constant can be estimated using the Randles-Sevcik equation[1]:

$$I_p = 2.69 \times 10^5 n^{3/2} A D_{Li}^{1/2} v^{1/2} C_{Li}$$
 [1]

where I_p is the peak current, n represents electron number, A represents electrode area, D_{Li} is the Li ion diffusion coefficient, C_{Li} is the Li ion concentration in the electrochemical reaction, is the scanning rate.

Table S5. Lithium ion diffusion coefficients.

Samplas	D_{Li^+} [cm ² S ⁻¹]					
Samples	C1 (cathode peak at 1.8-2.0V)	C2 (cathode peak at 2.1-2.4V)				
Nb ₂ O ₅ -NbC/CNF-PS	19.69×10 ⁻⁸	8.86×10 ⁻⁸				
CNF	4.55×10 ⁻⁸	5.28×10 ⁻⁸				
Without interlayer	1.43×10 ⁻⁹	2.56×10-8				

Table S6. Electrochemical performance of some representative recently-reported heterostructurescontaining interlayer/modified separator in the recently-reported literatures.

Interlayer/ modified separator	Initial capacity (mAh g ⁻¹)	Rate (C)	Cycles	Capacity Decay (cycle ⁻¹)	Cycling performance (mAh g ⁻¹)	Sulfur loading (mg cm ⁻²)	Sulfur cathode	Reference		
	800	1	800	0.044%	508.5	1.2				
Nb ₂ O ₅ -NbC/CNF- PS	818	818 0.2		18 0.2 100 —			776.4	3	MC/S*	This work
15	752	0.5	250	0.045%	612	4				
NbN/G modified separator	1079	1	300	0.096%	768	1-1.5	Sulfur	[2]		
NCM (NbC-	1304	0.2	100	0.24%	988.4		Sulfur	[3]		
modified separator)	1082	2	1500	0.037%	500	2				
	1223	0.2	100	0.152%	905	1.2		Sulfur [4]		
MoP ₂ /CNT	1035	0.2	500		641	20	Sulfur			
internayer	892	1	500	0.045%	392.8	2.8				
	1083	1	500	0.028%	632.6	0.8-1				
MoO ₂ -Mo ₂ N-SP- Celgard	1152	0.1	100		790	3.1	CB/S	[5]		
	826	0.2	100	0.26%	590	4				
SnO ₂ NWs@CP	900	0.2	100		886	2.2	Culfur	[6]		
interlayer	883	0.2	100		815	4	Sulfur	[0]		

Ni/SiO ₂ /G- modified separator	1282	0.2	100	0.28%	922	112		[7]
	940	2	300	0.085%	699	1-1.2		
ReS ₂ @NG	854	2	800	0.064%	854	1.4-1.6	CNT/S	[8]
interlayer	796	1	500	0.036%	398	3.27	CN1/S	
CoS ₂ /HPGC interlayer	1055	0.2	250		846	253	Sulfur	[9]
	743	1	500	0.07%	519	2.5-5		
TiO ₂ -TiN modified separator	1034	0.3	300	0.027%	927	1.0-1.2	MWCN Ts/S	[10]
TiO- TiO ₂ /BNCNF interlayer	1014.7	0.5	400	0.092%	637.2	25	СМК-3-	[11]
	650	2	120		598	2.3	S	

* MC: mesoporous carbon

 Table S7. Electrochemical performance of some representative recently-reported Nb-relative catalysists in the recently-reported literatures.

Host	Initial capacity (mAh g ⁻¹)	Rate (C)	Cycles	Capacity Decay (cycle ⁻¹)	Cycling performance (mAh g ⁻¹)	Sulfur loading (mg cm ⁻²)	Reference
	800	1	800	0.044%	508.5	1.2	
Nb ₂ O ₅ - NbC/CNF-PS	818	0.2	100		776.4	3	This work
NDC/CNI-15	752	0.5	250	0.045%	612	4	
UCN@NhC/S	813	3	800	0.05%	500	1.5	[10]
HCN@NDC/S	906	0.1	100	0.19%	730	3	
S/NbN@NG	948	1	400	0.09%	592	2.4	[13]
Co-NbN/rGO/S	1103	0.2	150		706.5	1.2-1.7	[14]
	984	1	800	0.07%	404.5		
	1289	0.5	200	0.14%	913	1.5	[15]
$MCM/MD_2O_5/S$	1196	2	500		650	1.3	
	881	0.5	350	0.07%	856	1.05	[1/]
NDS2@S@IG	515	1	600		405	3.25	
S-A/T-Nb ₂ O ₅	1279	0.1	100		1006	1.5	[17]
	902	0.5	800	·	600	1.5	[1/]
A-Nb ₂ O _{5-x} @MCS-S	902.5	0.2	500		615	1	F101
	1126	1	1200	0.024%	746.3		[18]

References

[1] H. Kim, J. Lee, H. Ahn, O. Kim, M.J. Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries, Nat. Commun., 6 (2015) 7278.

[2] H.F. Shi, Z.H. Sun, W. Lv, S.J. Xiao, H.C. Yang, Y. Shi, K. Chen, S.G. Wang, B.S. Zhang, Q.H. Yang, F. Li, Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries, J. Electroanal. Chem., 45 (2020) 135-141.

[3] W.L. Cai, G.R. Li, K.L. Zhang, G.N. Xiao, C. Wang, K.F. Ye, Z.W. Chen, Y.C. Zhu, Y.T. Qian, Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries, Adv. Funct. Mater., 28 (2018) 1704865.

[4] Y. Luo, N. Luo, W. Kong, H. Wu, K. Wang, S. Fan, W. Duan, J. Wang, Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium-Sulfur Batteries, Small, 14 (2018) 1702853.

[5] J.L. Yang, S.X. Zhao, Y.M. Lu, X.T. Zeng, W. Lv, G.Z. Cao, In-situ topochemical nitridation derivative MoO₂-Mo₂N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries, Nano Energy, 68 (2020) 104356.

[6] H. Ahn, Y. Kim, J. Bae, Y.K. Kim, W.B. Kim, A multifunctional SnO₂-nanowires/carbon composite interlayer for high- performance lithium-sulfur batteries, Chem. Eng. J., 401 (2020) 126042.

[7] C. Chen, Q.B. Jiang, H.F. Xu, Y.P. Zhang, B.K. Zhang, Z.Y. Zhang, Z. Lin, S.Q. Zhang, Ni/SiO₂/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries, Nano Energy, 76 (2020) 105033.

[8] N. Wei, J.S. Cai, R.C. Wang, M.L. Wang, W. Lv, H.N. Ci, J.Y. Sun, Z.F. Liu, Elevated polysulfide regulation by an ultralight all-CVD-built ReS₂@N-Doped graphene heterostructure interlayer for lithium-sulfur batteries, Nano Energy, 66 (2019) 104190.

[9] Q. Hu, J. Lu, C. Yang, C. Zhang, J. Hu, S. Chang, H. Dong, C. Wu, Y. Hong, L. Zhang, Promoting Reversible Redox Kinetics by Separator Architectures Based on CoS₂ /HPGC Interlayer as Efficient Polysulfide-Trapping Shield for Li-S Batteries, Small, 16 (2020) 2002046.

[10] T.H. Zhou, W. Lv, J. Li, G.M. Zhou, Y. Zhao, S.X. Fan, B.L. Liu, B.H. Li, F.Y. Kang, Q.H. Yang, Twinborn TiO_2 -TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries, Energy Environ. Sci., 10 (2017) 1694-1703.

[11] J. Zhu, Y. Liu, L. Zhong, J. Wang, H. Chen, S. Zhao, Y. Qiu, Hybrid TiO-TiO₂ nanoparticle/B-N co-doped CNFs interlayer for advanced Li S batteries, J. Electroanal. Chem., 881 (2021) 114950.

[12] Q.Q. Huang, M.Q. Chen, Z. Su, L.Y. Tian, Y.Y. Zhang, D.H. Long, Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries, Chem. Eng. J., 411 (2021) 128504.

[13] X. Li, B. Gao, X. Huang, Z. Guo, Q. Li, X. Zhang, P.K. Chu, K. Huo, Conductive Mesoporous Niobium Nitride Microspheres/Nitrogen-Doped Graphene Hybrid with Efficient Polysulfide Anchoring and Catalytic Conversion for High-Performance Lithium-Sulfur Batteries, ACS Appl. Mater. Interfaces, 11 (2019) 2961-2969.

[14] W.N. Ge, L. Wang, C.C. Li, C.S. Wang, D.B. Wang, Y.T. Qian, L.Q. Xu, Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium-sulfur batteries, J. Mater. Chem. A, 8 (2020) 6276-6282.

[15] Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Kinetically-enhanced polysulfide redox reactions by Nb₂O₅nanocrystals for high-rate lithium–sulfur battery, Energy Environ. Sci., 9 (2016) 3230-3239.

[16] Z. Xiao, Z. Yang, L. Zhang, H. Pan, R. Wang, Sandwich-Type NbS₂@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries, ACS Nano, 11 (2017) 8488-8498.

[17] J.Y. Wang, G.R. Li, D. Luo, Y. Zhao, Y.G. Zhang, G.F. Zhou, L.L. Shui, X. Wang, Amorphous-crystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium-sulfur batteries, J. Mater. Chem. A, 9 (2021) 11160-11167.

[18] D. Luo, Z. Zhang, G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, S. Sy, Y.P. Deng, Y. Jiang, Y. Zhu, H. Dou, Y. Hu, A. Yu, Z. Chen, Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb₂O_{5-x} Nanocluster toward Superior Li-S Performance, ACS Nano, 14 (2020) 4849-4860.