Reverse-design-strategy for C@Li₃VO₄ Nanoflakes

toward superb high-rate Li-ion storage

Jie Xu^a, Pei Liang^b, Dongmei Zhang^a, Cunyuan Pei^a, Zongping Zhang^a, Shuyue Yang^a,

Shibing Ni^a*

^aCollege of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China. E-mail: shibingni07@126.com;

^bCollege of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.

Keywords: Lithium vanadate; Reaction kinetics; Anode; Lithium ion batteries

Fig. S1 Optical photograph of the LVO precursor. (a) Obtained via hydrothermal reaction. Transferred into a beaker before (b) and after (c) drying.

Fig. S2 SEM image of LVO@C with low (a) and high (b) magnification.

Fig. S3 XRD pattern of the LVO@C.

Fig. S4 Survery XPS spectrum of the as-prepared C@LVO-NFs.

Fig. S5 (a) Pore size distribution curve and (b) TEM image of the C@LVO-NFs.

Fig. S6 The atomistic hybrid structure of C nanoflake and LVO surface. (a) The hybrid structure of C/LVO(001) surface; (b) The hybrid structure of C/LVO(010) surface; (c) The hybrid structure of C/LVO(100) surface; (d) The hybrid structure of C/LVO(201) surface; (e) The hybrid structure of C/LVO(320) surface; (f) The statistical data of the absorption energy of different hybrid structures.

Different surface	Bandgap (eV)	D(LVO-C) (nm)
001	0.14	2.153
010	0.16	1.788
011	0.11	1.977
201	0.17	2.245
320	0.09	1.927

Tab. S1 The calculated bandgap and D-value between LVO and the monolayer C.

Fig. S7 CV curves of the LVO@C.

Fig. S8 The initial three charge/discharge curves of the LVO@C.

Fig. S9 Capacity retention of the LVO@C at 0.2 A g⁻¹.

Fig. S10 Representative charge/discharge curves in the first period rate performance testing for Figure 4d.

Fig. S11 The initial three charge/discharge curves (a) and cycle performance (b) of C

obtained by fully etching C@LVO in diluted HCl and washed by deionized water.

Fig. S12 Microstructure of the C@LVO-NFs after long-life testing. (a) SEM and (b) TEM image, (c) SAED pattern, and (d) scanning TEM image with element mappings of V, O, C and N.

Fig. S13 XRD pattern (a) SEM images with low (b) and high (c) magnification of the as-prepared $Li_3V_2(PO_4)_3$ cathode.

The Li₃V₂(PO₄)₃ cathode (LVP) were prepared via hydrothermal reaction with spray drying. Firstly, 5 mmol hexamethylenetetramine, 2 mmol V₂O₅, 3.1 mmol Li₂CO₃ and 0.7479 g C₆H₁₂O₆·H₂O were dissolved in deionized water and transferred into a 50 mL teflonlined autoclave, reacting at 120 °C for 12 h, to obtain an intermediate solution. Then, 0.6902 g NH₄H₂PO₄ were added in the solution with stirring for 30 mins. Finally, the mixed solution was spray dried and collected, sintered at 350 °C for 4 h and then 850 °C for 8 h in N₂.

Fig. S14 The initial three charge/discharge curves (a) and cycle performance (b) of the LVP cathode.