Supplementary Information for "Correlated biphasic features of the improved rate capability upon Ga doping in

LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂"

Jie Li¹, Zhimin Li^{1,1}, Maolin Zhang¹, Yangxi Yan¹, Dongyan Zhang^{1,2}, Pangpang

Wang², Ri-ichi Murakami³

¹School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126,

P. R. China

²Nanomaterials Group, Institute of System, Information Technologies and Nanotechnologies (ISIT), Fukuoka Industry-Academia Symphonicity (FiaS), 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan

³School of Mechanical Engineering, Chengdu University, Chengdu 610106, P. R. China

¹ zmli@mail.xidian.edu.cn

 $^{2 \} zhangdongyan@xidian.edu.cn$

Table S1. 100 cycle capacity retention of NCM622 with and without Ga doping in the voltage

Ga content	0%	0.5%	1%	3%
Retention	68.47%	66.91%	80.46%	80.82%

range of 2.7-4.5 V

Table S2. 100 cycle capacity retention of NCM622 with and without Ga doping in the voltage

range of 3.5-4.3 V

Ga content	0%	0.5%	1%	3%
Retention	72.97%	90.09%	92.36%	91.41%

Figure S1. (a) Cyclic discharge capacity, (b) capacity retention, at 1 C of Ga doped and undoped

NCM622 in the voltage range of 2.7-4.5 V.

Figure S2. Rietveld refinement of XRD pattern for NCM622 without Ga doping.

Figure S3. Rietveld refinement of XRD pattern for NCM622 with 0.5% Ga doping.

Figure S4. Rietveld refinement of XRD pattern for NCM622 with 1% Ga doping.

Figure S5. Rietveld refinement of XRD pattern for NCM622 without Ga doping.

Figure S6. SEM micrographs of (a) 0%, (b) 0.5%, (c) 1%, (d) 3% Ga doped NCM622.

Figure S7. (a-b) GITT curves for the discharge of the prepared samples, (c-d) applied current plus vs cell voltage for a single titration step of GITT curves, (e-f) linear fit of the cell voltage as a function of the square root of time ($\tau^{1/2}$) with different pulse current.

Figure S8. The chemical diffusion coefficient of Li⁺ as function of potential for NCM622 with and

without Ga doping during discharge process.

Cocontont	Diffusion coefficient (cm ² /s)			
Ga content	Before cycling	After 100 cycles		
0%	1.28×10 ⁻⁹	6.31×10 ⁻¹⁰		
1%	1.567×10 ⁻⁹	9.48×10 ⁻¹⁰		

Table S3. Calculated diffusion coefficient from EIS for NCM622 with and without Ga doping.