Supporting Information

Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation

Jinxiang Diao[‡], Xiaolin Li[‡], Shuya Wang, Zejun Zhao, Weitao Wang, Kai Chen, Tingting Chao^{*}, Yong Yang^{*}

Experiment Section

*Preparation of N-Mo*₂*C*: All the chemical reagents were of analytical grade and used without further purification. Two piece of Ni foam (2 cm×1.5 cm) were cleaned ultrasonically in 2 M HCl for 30 min and washed with water and absolute alcohol for 3 times. Then 0.6 g (NH₄)₆ $Mo_7O_{24}.4H_2O$ was dissolved in 30 mL of water, and 880 µL ethylenediamine (EDA) were dissolved in 30 mL of distilled water under continuities stirring. The feed percentage of ethylenediamine (EDA) was 440 µL and 1320 µL respectively. Then, the pH value of solution was adjusted to 4-5 using 2 M HCl until the white precipitate appears. The mixture solution was transferred into a 50 mL Teflon-lined stainless steel autoclave, and Ni foam was placed upright in the autoclave. The autoclave was heated to 150 °C in an electric oven and maintained for 12 h. After that Ni foam with precursor was cleaned with ethanol and deionized water for several times before being fully dried in a vacuum oven at 60 °C for overnight. Then the Ni foam with precursor was reduced at 450 °C for 2 h in H₂/Ar (v/v, 5/95) atmosphere to achieved sample. According to their XPS result, they are denoted as N-Mo₂C-1/NF (2.25 awt%), N-Mo₂C/NF (6.78 awt%) and N-Mo₂C-3/NF (10.25 awt%). Further 20 wt% Pt/C, IrO₂ and Ni foam was tested for comparison.

Preparation of Mo_2C *and* Mo_2N : MoO₃-EDA precursor was synthesized via the previously described method.^[1] 500 mg MoO₃-EDA was transferred into a tube furnace and heated to the temperature of 650 °C at a heating rate of 5 °C min⁻¹ and holding for 3 h under the atmosphere of 5 vol % H₂/Ar. After naturally cooling down, the Mo₂C was obtained. Under the NH₃ atmosphere, the Mo₂N were obtained.

Structural Characterization: Powder X-ray diffraction (XRD) of all samples was performed on a Bruker D8 ADVANCE diffractometer using Cu K α radiation. The morphology and nanostructure of N-Mo₂C was observed by high-resolution field emission SEM (JEOL JSM-6390A) and transmission electron microscope (TEM, G² F20 S-TWIN), aberration-corrected HAADF-STEM instrument (Themis Z, FEI) at 300 kV together with a SEM (SU8220, Hitachi) at 15 kV. The specific surface areas and the distribution of pore size were tested by N₂ adsorption at 77 K, using instrument Micromeritics Tristar-3020. The chemical state of the elements in N-Mo₂C was measured by X-ray photoelectron spectroscopy (XPS) on a Thermo Fisher Escalab 250Xi. X-ray monochromator was microfocused Al K α radiation. Raman spectra was obtained from Renishaw Ramanscope. X-ray absorption fine structure (XAFS) spectra at the W K-edge were recorded at the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF), China.

Electrochemical Measurements: All the electrochemical measurements were carried out were performed on a CHI 700E electrochemical workstation (CH Instruments, China). For HER and OER, the Ni supported N-Mo₂C was directly used as the working electrodes with testing area of 0.25 cm². A saturated Ag/AgCl and a graphite rod was used as the reference electrode and counter electrode. Electrochemical impedance spectroscopy (EIS) was carried out in frequency range of 100 kHz-0.1Hz under a potential of 100 mV in KOH solution. In addition, the double layer capacitance (C_{dl}) was evaluated from the relationship of the capacitive current ($\Delta j = j_{anodic} - j_{cathodic}$) vs. potential scan rates, which was considered to be proportional to electrochemical active surface area (ECSA).^[2]

The overall water splitting is performed in a two-electrode system. The long-term potential vs. time plots were obtained under a current density of 10 mA \cdot cm⁻² for 24 h.

IR-correction: Unless stated otherwise, all polarization curves measured in a threeelectrode configuration are *i*R-corrected. The correction was done according to the following equation:

$$E_{\rm corr} = E_{\rm mea} - iR_{\rm c}$$

Where E_{corr} is *i*R-corrected potential, E_{mea} experimentally measured potential, and R_c is the compensated resistance^[3].

DFT theoretical calculations: The present first principle DFT calculations are performed with the projector augmented wave (PAW) method.^[4] The gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional was used for exchange-functional. The cut-off energy of the plane-wave basis is set at 400 eV. The vacuum spacing in a direction perpendicular to the plane of the catalyst is at least 10 Å. The Brillouin zone integration is performed using $3\times3\times1$ Monkhorst and Pack k-point sampling for a primitive cell. All the atoms in these structures were fully relaxed to using the conjugated gradient method until a convergence criterion of 10^{-6} eV for energy and 0.03 eV/Å for force.

The OER is considered, as below:

$$* + H_2O(l) \rightarrow OH * + H^+ + e^-$$
(1)

$$OH^* + H_2O(l) \rightarrow O^* + H^+ + e^-$$
(2)

$$O^* + H_2O(l) \rightarrow OOH^* + H^+ + e^-$$
(3)

$$OOH^* \to O_2(g) + H^+ + e^-$$
(4)

where * is an adsorption site on catalysts. I and g is liquid and gas phases, respectively. Therefore, the ΔG for each step can be calculated by:

$$\begin{aligned} & \Box G_{1} = G(OH^{*}) + G(H^{+} + e^{-}) - G(H_{2}O) - G(^{*}) \\ &= \{\Box G_{OH^{*}} + G(^{*}) + [G(H_{2}O - 1/2G(H_{2})]\} + 1/2G(H_{2}) - G(H_{2}O) - G(^{*}) \\ &= \Box G_{OH^{*}} \\ & \Box G_{2} = G(O^{*}) + G(H + e^{-}) - G(OH^{*}) \\ &= \{\Box GO^{*} + G(^{*}) + [G(H_{2}O) - G(H_{2})]\} + 1/2G(H_{2}) - \{\Box GOH^{*} + G(^{*}) + [G(H_{2}O) - 1/2G(H_{2})]\} \\ &= \Box G_{O^{*}} - \Box G_{OH^{*}} \\ & \Box G_{3} = G(OOH^{*}) + G(H^{+} + e^{-}) - G(O^{*}) - G(H_{2}O) \\ &= \{\Box G_{OOH^{*}} + G(^{*}) + [2G(H_{2}O) - 3/2G(H_{2})]\} + 1/2G(H_{2}) - \{\Box G_{O^{*}} + G(^{*}) + [G(H_{2}O) - G(H_{2})]\} - G(H_{2}O) \\ &= [\Box G_{OOH^{*}} + G(^{*}) + [2G(H_{2}O) - 3/2G(H_{2})]\} + 1/2G(H_{2}) - \{\Box G_{O^{*}} + G(^{*}) + [G(H_{2}O) - G(H_{2})]\} - G(H_{2}O) \\ &= [\Box G_{OOH^{*}} - \Box G_{O^{*}}] \\ & \Box G_{4} = G(O_{2}) + G(H^{+} + e^{-}) - G(OOH^{*}) \end{aligned}$$

$$= \{4.92 + 2G(H_2O) - 2G(H_2)\} + 1/2G(H_2) - \{\Box GOOH^* + G(^*) + [2G(H_2O) - 3/2G(H_2)]\}$$

= 4.92 - $\Box G_{OOH^*}$

Then the free energies can be obtained by including the zero point energy (ZPE) and the entropy (S) corrections in equation $G = Eads - E_{ZPE} - TS$. The E_{ZPE} could be obtained from the calculation of vibrational frequencies for the adsorbed species.

Finally, Chemisorption energies of atomic hydrogen were calculated relative to H₂ (g) by: $E = E(surface + nH) - E(surface) - \frac{1}{2}E(H_2).$

Figure S1. SEM of pure Mo_2C/NF and Mo_2N/NF .

Figure S2. XRD of the pure N-Mo₂C, Mo₂C and Mo₂N (zoom-in region between 33° and

^{46°).}

Figure S3. Raman spectra of N-Mo₂C/NF.

Figure S4. Full spectrum X-ray photoelectron spectroscopy (XPS) spectra of N-Mo₂C/NF

Catalyst	Mo3d _{5/2} (eV)	FWHM	The peak area ratio (%)	Mo3d _{3/2} (eV)	FWHM	The peak area ratio (%)	Peak shape
N-Mo ₂ C/NF	229.5	1.65	60	232.7	1.65	40	GL
Mo ₂ C/NF	229.0	1.70	60	232.2	1.70	40	GL
Mo ₂ N/NF	230.0	1.93	60	233.1	1.93	40	GL

Table S1. XPS fitting parameters for Mo 3d spectrum of N-Mo_2C/NF, Mo_2C/NF, and Mo_2N/NF

Figure S5. XPS spectra of Ni 2p for N-Mo $_2$ C/NF Nanosheets

Figure S6. (a) C K-edge XANES spectra of the N-Mo₂C/NF and Mo₂C/NF. (b) N K-edge XANES spectra of the N-Mo₂C/NF and Mo₂N/NF.

Figure S7. (a) N_2 adsorption/desorption isotherms and of Mo_2C/NF , Mo_2N/NF and N- Mo_2C/NF . (b) corresponding pore distribution of Mo_2C/NF , Mo_2N/NF and N- Mo_2C/NF .

Figure S8. Polarzation curves of Ni foam in 1.0 M KOH at scan of 5 mV s⁻¹ for HER.

Catalyst	Media	(mV) at	Reference
		j=10mAcm ⁻²	
N-Mo ₂ C/NF	1.0 M KOH	83.9	This work
Ni/TMC	1.0 M KOH	128	Adv. Energy Mater. 2020, 10, 2002260
O-Co ₂ P-3	1.0 M KOH	160	Adv. Mater. 2017, 29, 1606980
mC-Mo-750	1.0 M KOH	145	Adv. Funct. Mater. 2018, 30, 1807419.
Ni ₂ P/Ni	1.0M KOH	106	ACS Appl. Mater. & Inter. 2015,7,2376
Ni-Se-Mo	1.0 M KOH	101	Int. J. of Hydrogen Energ. 2020, 45, 6015
N doped MoS ₂	1.0 M KOH	141	ChemElectroChem 2020, 7, 336
MoS ₂ /MoSe ₂	1.0 M KOH	235	Nanoscale, 2019, 11, 717
Ni-N-C	1.0 M KOH	147	Energy Environ. Sci. 2019, 12, 149
FeNiSe-NS/EG	1.0 M KOH	187	Nanoscale, 2019, 11,17571

 Table S2. HER performances of N-Mo₂C/NF and other reported electrocatalysts.

Table S3 the Rs, Rct and CPE-P and CPE-T value of N-Mo₂C/NF, Mo₂C/NF, Mo₂N/NF and Pt/C for HER.

Catalyst	R _S	R _{ct}	CPE-P	СРЕ-Т
N-Mo ₂ C/NF	1.791	27.95	0.819	0.001
Mo ₂ C/NF	1.944	36.30	0.857	0.001
Mo ₂ N/NF	1.393	62.42	0.830	0.008
Pt/C	1.914	6.725	0.810	0.143

Figure S9. Theoretical and experimental tested H₂ evolution on N-Mo₂C/NF

Figure S10. The plots of overpotential vs. $\log[J/(mA \text{ cm}^{-2})]$ for Mo₂C/NF (a), Mo₂N/NF (b) and N-Mo₂C/NF (c), and IrO₂ (d) respectively.

Figure S11. Polarzation curves of Ni foam in 1.0 M KOH at scan of 5 mV s⁻¹ for OER.

Table S4. OER performances of N-Mo₂C/NF and other electrocatalysts reported in previously literatures.

Catalyst	Media	(mV) at	Reference
		j=10mA cm ⁻²	
N-Mo ₂ C/NF	1.0 M KOH	230	This work
MoS ₂ -Ni	1.0 M KOH	280	Small, 2016 ,12, 2975.
Ni-Ni ₃ S ₂ /NF	1.0 M KOH	310	Nano Converg. 2017, 4, 7.
Ni–Fe–Sn	1.0 M KOH	253	<i>Electrochimica Acta</i> , 2019 , <i>301</i> , 39
Co ₃ O ₄ /NiCo ₂ O ₄ /NF	1.0M KOH	270	ACS Sustain. Chem. Eng. 2019,
			7,12214
ACo ₂ O ₄ /NF	1.0 M KOH	271	Int. J. of Hydrogen Energ. 2018,
			<i>43</i> ,14360
Co-P film	1.0 M KOH	345	Angew. Chem., Int. Ed. 2015, 54, 6251
NiSSe/NF	1.0 M KOH	247	Int. J. of Energ. Res. 2019, 44,11
Ni ₂ P/NF	1.0 M KOH	290	Energy Environ. Sci. 2015, 8, 2347
CompactMoO ₂ /NF	1.0 M KOH	330	Adv. Mater. 2016, 28, 3785

Figure S12. CV curves at different scan rates for (a) Mo_2C/NF , (c) Mo_2N/NF and (e) N- Mo_2C/NF . (b, d, f) Capacitive i =i_a-i_c at the potential of 1.275 V vs. RHE plotted against scan rate fitted to estimate the electrochemical double-layer capacitances (C_{dl}).

Table 5 the Rs, Rct and CPE-P and CPE-T value of N-Mo $_2$ C/NF, Mo $_2$ C/NF, Mo $_2$ N/NF and Pt/C for OER.

Catalyst	R _S	R _{ct}	CPE-P	СРЕ-Т
N-Mo ₂ C/NF	1.614	4.39	0.546	0.169
Mo ₂ C/NF	1.754	15.40	0.831	0.002
Mo ₂ N/NF	2.164	14.15	0.541	0.499
IrO ₂	1.776	8.10	0.749	0.001

Figure S13. Theoretical and experimental tested O_2 evolution on N-Mo₂C/NF.

Figure S14. Full spectrum X-ray photoelectron spectroscopy (XPS) spectra of (a) N-Mo₂C-1/NF, (c) N-Mo₂C/NF and (e) N-Mo₂C-3/NF. N 1s XPS spectra of (b) N-Mo₂C-1/NF, (d) N-Mo₂C/NF and (f) N-Mo₂C/NF-3.

Figure S15. HER electrocatalytic performance. (a) Polarzation curves of N-Mo₂C-1/NF, N-Mo₂C/NF and N-Mo₂C-2/NF in 1.0 M KOH at scan of 5 mV s⁻¹. (b) Corresponding Tafel plots. (c) Nyquist plots obtained at 200 mV overpotential. OER electrocatalytic performance. (d) Polarzation curves of N-Mo₂C-1/NF, N-Mo₂C/NF and N-Mo₂C-2/NF in 1.0 M KOH at scan of 5 mV s⁻¹. (e) Corresponding Tafel plots and f) Nyquist plots.

Figure S16. CV curves at different scan rates for (a) N-Mo₂C-1/NF and (c) N- Mo₂C-2/NF. (b, d) Capacitive $i = i_a - i_c$ at the potential of 1.275 V vs. RHE plotted against scan rate fitted to estimate the electrochemical double-layer capacitances (C_{dl}).

Table S6. Comparison of two electrode water splitting cell voltage of N-Mo₂C/NF electrocatalyst with other nonprecious bifunctional electrocatalyst in 1 M KOH.

Catalysts	Support	Overallvoltage	Reference
		@-10 mA cm ⁻²	
N-doped Mo ₂ C/NF-12	Ni foam	1.54V	This work
NiCo ₂ S ₄ NW	Ni foam	1.63 V	Adv. Funct. Mater. 2016,26, 4661
NiSe nanowire film	Ni foam	1.63 V	Angew. Chem. Int. Ed. 2015, 54,
			9351
NiS/Ni foam	Ni foam	1.64 V	Chem. Commun. 2016. 52,1486
Ni ₃ S ₂ Nanosheet Arrays	Ni foam	1.70 V	J. Am. Chem.Soc. 2015, 137, 14023
NiCoP nanowire array	Ni foam	1.64 V	J. Mater. Chem. A 2017, 5, 14828.
Ni-Fe-O nanowires	Ni foam	1.64 V	Adv. Energy Mater. 2017, 8,
			1701347
Fe-MoS ₂ /Ni ₃ S ₂ /NF-2	Ni foam	1.61 V	Dalton Transactions, 2019, 48.
			12186
NS-MnO ₂	Ni foam	1.61 V	Adv. Energy Mater. 2017, 7,
			1700005
Co-P films	Cu foam	1.64 V	Angew. Chem. 2015, 127, 6349

Figure S17. Long-term durability of N-Mo₂C/NF overall water splitting at a current density of 10 mA cm⁻².

Figure S18. SEM image of N-Mo $_2$ C/NF after overall water splitting reaction.

Figure S19. XRD of N-Mo₂C after overall water splitting reaction.

Figure S20. XPS spectra of Mo3d for N-Mo₂C/NF after overall water splitting reaction.

Figure S21. Chemisorption models of H_2O^* , O^* , OH^* and OOH^* intermediates on the surfaces of Mo_2C respectively

Figure S22. Chemisorption models of H_2O^* , O^* , OH^* and OOH^* intermediates on the surfaces of N-Mo₂C respectively

Figure S23. Chemisorption models of H_2O^* , OH^* , O^* , and OOH^* intermediates on the surfaces of N-Mo₂C respectively.

Catalwat	$H_2O(1) \rightarrow OH^*$	$OH^* \rightarrow O^*$	$0^* \rightarrow 00H^*$	$OOH^* \rightarrow O_2$
Catalyst				
C-active site Mo ₂ C	1.21	0.85	1.69	1.17
Mo-active site Mo ₂ C	0.82	1.01	1.56	1.53
C-active site N-Mo ₂ C	1.05	0.96	1.62	1.29
Mo-active site N-Mo ₂ C	0.62	1.36	1.45	1.49
N-active site N-Mo ₂ C	0.76	1.18	1.58	1.40
Ir-active site IrO ₂	0.70	1.30	1.46	1.46

Table S7. Reaction (free) energy on the Mo₂C, N-Mo₂C and IrO₂

Figure S24. Chemisorption models of OOH* on the surfaces of Mo₂C, N-Mo₂C, and IrO₂ respectively.

Figure S25. Density of state for Mo₂C and N-Mo₂C.

References

- [1] a) L. Feng, A. Li, Y. Li, J. Liu, L. Wang, L. Huang, Y. Wang, X. Ge, ChemPlusChem
- 2017, 82, 483; b) H. Liu, X. Peng, X. Liu, G. Qi, J. Luo, ChemSusChem 2019, 12, 1334.
- [2] X. Sun, Q. Shao, Y. Pi, J. Guo, X. Huang, J. Mater. Chem. A 2017, 5, 7769.
- [3] Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian, H. Fu, Small, 2018, 1800763
- [4] G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251; b) C. Zhu, A. L. Wang, W. Xiao, D.
- Chao, X. Zhang, N. H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H. J. Fan, *Adv. Mater.* **2018**, *30*, 170551.