Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for:

Observation of memory effects associated with degradation of rechargeable lithiumion cells using ultrafast surface-scan magnetic resonance imaging.

Konstantin Romanenko,*a Alexej Jerschow^b

a. School of Life and Environmental Sciences, University of Sydney, Building G08, Sydney, NSW 2006, Australia.

b. Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003

Fig. S.1 (a) Pixel-by-pixel average, $\langle B_{DC} \rangle$, and (b) RMSD of the B_{DC} field distribution of a Nokia BL-5C cell as functions of current (*I*) in the range from -4 A (discharging) to +4 A (charging). The $\langle B_{DC} \rangle$ (*I*) data are approximated with a polynomial $P_1 = -1.055 I - 0.14$. The RMSD(*I*) data are approximated with a polynomial $P_2 = 0.094 I^2 + 0.0005 I + 1.49$. (c) B_{DC} values at locations "1" (red squares) and "2" (green squares) as indicated in subfigures (d-f). (d) Surface-scan MRI map of magnetic field perturbation $\Delta B = B_{ST} + B_{SoC}$. (e) B_{DC} field distribution produced by the cell (f) discharging at 4 A.