Supporting Information

Photothermal-triggered shape memory coatings with active repairing and corrosion sensing properties

Li Cheng^{1,2}, Chengbao Liu³, Haichao Zhao^{1,*}, Liping Wang^{1,*}

¹ Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;

² University of Chinese Academy of Sciences, Beijing 100039, China;

³ Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;

* Corresponding Authors: Prof. Haichao Zhao and Prof. Liping Wang

E-mail: zhaohaichao@nimte.ac.cn (Haichao Zhao) and wangliping@nimte.ac.cn (Liping

Wang)

Fig. S1 SEM images of (a) GO and (b) PPG nanosheets.

Fig. S2 Raman spectra of GO and PPG nanosheets under 532 nm of excitation wavelength.

Fig. S3 Thermal gravity (TG) and differential thermal gravity (DTG) analysis of NH₂-Phen and PPG nanosheets.

Fig. S4 The linear relationship between absorbance and concentration of NH₂-Phen in 3.5 wt% NaCl solution.

Fig. S5 Differential scanning calorimeter (DSC) heating curves of pure EP and PPG/EP.

Fig. S6 Stress-strain curves of pure EP and PPG/EP at room temperature.

Samples	Tensile strength (MPa)	Strain at break (%)	Toughness (MJ m ⁻³)	Adhesion strength (MPa)	Coefficient of thermal expansion (20 to 120 °C, ppm/°C)
Pure EP	24.8 ± 1.8	23.3 ± 1.3	4.3 ± 0.2	8.5 ± 0.3	127
PPG/EP	29.2 ± 2.2	27.7 ± 2.1	8.4 ± 0.3	9.6 ± 0.8	132

Table S1 Material properties of pure EP and PPG/EP.

Table S2 Surface temperature of coatings with different PPG content after irradiating for 90 s

Fig. S7 Shape memory behaviors of Pure EP and PPG/EP. Shape programming was achieved by heating the polymers to 60 $^{\circ}$ C, and followed by cooling to room temperature.

Shape recovery process was achieved by reheating the samples to 60 °C.

Fig. S8 The failed shape recovery process of pure EP under 10 s of NIR irradiation.

Fig. S9 SEM images of PPG/EP with different crack width after 90 s of NIR irradiation (0.8 $$\rm W/cm^2)$.$

Fig. S10 Optical images of carbon steels immersed in 3.5 wt% NaCl solution for 24 h: (a) without Phen, (b) with Phen.

Coatings	Immersion time	$Z_{f=0.01~\mathrm{Hz}}\left(\Omega~\mathrm{cm}^2 ight)$	Reference	
Irradiated PPG/EP	1 h 15 days	$\frac{4.24 \times 10^{6}}{4.15 \times 10^{5}}$	This work	
MSNs-BTA@PDA/			Ref. 59	
water-borne alkyd coatings	1 day	7.4×10^{4}	ACS Appl. Mater. Interfaces, 2019, 11 , 10283	
GO-PDA-Zn/EP	120 h	$5.8 imes 10^4$	Ref. 71 <i>Chem. Eng. J.</i> 2020, 391 , 123630	
GO/ZIF-8/Epoxy	72 h	$7.9 imes 10^4$	Ref. 72 <i>Carbon</i> 2020, 161 , 231	
ZHM-E3/EP	7 days	1.5 × 10 ⁵	Ref. 73 ACS Appl. Mater. Interfaces, 2020, 12 , 19823	
PMB/EP	15 days	1.77×10^5	Ref. 74 J. Mater. Sci. Technol. 2021, 80 , 36	

Table S3 Comparison of the anticorrosion performance of the scratched coatings in neutral

NaCl solution (for carbon steel substrates).

Fig. S11 Raman spectrum of NH₂-Phen powders.

Table S4 Comparison of functional properties between the work and reported smart

anticorrosion coatings.					
Coatings	First repair step-"close"	Second healing step-"healing"	Corrosion sensing	Reference	
PPG/EP	Yes	Yes	Yes	This work	
Microcapsule/poly er	m No	Yes	No	Ref. 3 Adv. Mater., 2009, 21 , 645	
PUU–g-C ₃ N ₄ NS	Yes	Yes	No	Ref. 6 J. Mater. Chem. A, 2018, 6 , 5887	
BTA/SMP	Yes	Yes	No	Ref. 8 J. Mater. Chem. A, 2017, 5 , 2355	
Polyelectrolyte/inh itor sol-gel	ib No	Yes	No	Ref. 11 Adv. Mater., 2008, 20 , 2789	
Silicon/polyelectro te/BTA sol-gel	ly No	Yes	No	Ref. 12 Chem. Mater., 2007, 19 , 402	
MSNPS-SNAP	Yes	Yes	No	Ref. 13 J. Mater. Chem. A, 2016, 4 , 8041	
SF-SHAC	No	Yes	No	Ref. 15 ACS Appl. Mater. Interfaces, 2019, 11 , 4425	
PCL-SMASH	Yes	Yes	No	Ref. 18 ACS Macro. Lett., 2013, 2 , 152	
CNT hybrids	Yes	No	No	Ref. 27 ACS Appl. Mater. Interfaces, 2017, 9 , 27213	
PMA-X-1	No	No	Yes	Ref. 35 Nat. Chem., 2012, 4, 559	
SP mechanophore	s No	No	Yes	Ref. 36 J. Am. Chem. Soc., 2010, 132 , 16107	
Encapsulated DCF/epoxy	No	No	Yes	Ref. 38 Adv. Mater., 2016, 28 , 2189	

				Ref 40
Microcapsule/epoxy	No	Yes	Yes	<i>Chem. Mater.</i> , 2019, 31 ,
1 1 5				2611