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Results and Discussion

Table S1 Mesophase identification and corresponding synthesis conditions 

Sample                                Amount of K2CO3 (mmol)    Synthesis temperature (°C)

K-Pyro-900-1.2 *                                        1.2                        900
K-TTB-1100-1.2 1.2                       1100
K-TTB-1300-1.2 1.2                       1300
K-TTB-1300-1.5
K-TTB-1300-2.0 *
K-TTB-1300-2.2

1.5                       1300
2.0                       1300
2.2                       1300  

Footnote：The two samples marked with * represent the two samples (Pyro and TTB) appearing 
in the maintext and the following tables and figures.

Table S2 XRF profile of K-TTB 

Element Wt % Atomic percent
K 17.9 50.3
Ta
W

59.5
22.6

36.2
13.5

Total content： 100.0 100.0

Table S3 XRF profile of K-Pyro 

Element Wt % Atomic percent
K 10.3 34.5
Ta
W
Total content：

41.6
48.3
100.0

30.6
34.9
100.0
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Figure S1. XRD patterns of K-precursors and Sn-products, (a, c) K-Pyro and K-TTB, (b, d) Sn-
Pyro and Sn-TTB. The K-precursors were synthesized by the solid-state reaction under different 
temperatures and raw ratios.

Figure S2. Rietveld refinement of K-TTB (K0.7(Ta0.7W0.3)O3, Tetragonal, P 4/m b m): experimental 
data (black), simulated diffraction (red), position of observed diffractions (orange), and residual plot 
(blue).
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Figure S3. SEM images of K- precursors prepared at different temperatures and with varied K/Ta 
ratios, (a) K-Pyro-900-1.2, (b) K-TTB-1100-1.2, (c) K-TTB-1300-1.2, (d) K-TTB-1300-1.5, (e) K-
TTB-1300-2.0, (f) K-TTB-1300-2.2. 
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Figure S4. Raman spectra showing the vibrational features of the K-Pyro and K-TTB intermediates 
prepared at different temperatures and with varied K/Ta ratios and the corresponding Sn(II) ion 
exchanged products; measurements performed with powder samples stimulated by 532 nm laser.
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Figure S5. UV-visible diffuse reflectance spectra (DRS) of K-Pyro and K-TTB prepared at 
different temperatures and with varied K/Ta ratios and the corresponding Tauc plot.

Figure S6. The valence band XPS spectra (VB-XPS) of Sn-Pyro and Sn-TTB.
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Figure S7. UV-visible diffuse reflectance spectra (DRS) of Sn-Pyro and Sn-TTB prepared 
at different temperatures and with varied K/Ta ratios and the corresponding Tauc plot.
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Figure S8. SEM images of EDS face scanning profile of the (a) Sn-TTB and (b) Sn-Pyro.

Table S4 XRF profile of Sn-TTB 

Element Wt % Atomic percent
Sn 19.0 26.5
Ta
W
Total content：

39.9
41.1
100.0

36.5
37.0
100.0

Table S5 XRF profile of Sn-Pyro 

Element Wt % Atomic percent
Sn 16.0 22.7
Ta
W

38.8
45.2

36.0
41.3

Total content： 100.0 100.0
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Figure S9. SEM image of Sn- products prepared at different temperatures and with varied K/Ta 
ratios, (a) Sn-Pyro-900-1.2, (b) Sn-TTB-1100-1.2, (c) Sn-TTB-1300-1.2, (d) Sn-TTB-1300-1.5, (e) 
Sn-TTB-1300-2.0, (f) Sn-TTB-1300-2.2. 

Figure S10. Unit cell structures of K-Pyro (left) and K-TTB (right). Color code: K (blue), Ta/W 
(orange), and O (red). The cross-sectional area of K channel in K-Pyro structure is about 15.04 (Å2), 
the cross-sectional area of A1, A2 site in K-TTB structure are 8.69 and 13.16 (Å2), respectively.
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Figure S11. (a) Photocurrent density-potential curves of Sn-Pyro and Sn-TTB products under a 
chopping AM1.5G illumination, 100 mW/cm2, with 0.2 M Na2SO3 as the hole scavenger. (b) The 
incident photon-to-current conversion efficiencies (IPCEs) of Sn-Pyro and Sn-TTB products were 
measured at 1.00 VRHE.

Figure S12. hydrogen evolution detected by gas chromatography in three cycles. All 
measurements were carried out in a 0.5 M potassium borate electrolyte (pH 9.0) under 
AM1.5 illumination, 100 mW/cm2.
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Figure S13. Co2p orbital XPS spectra of Sn-TTB sample (pristine and after CA test). 
Lorentzian peaks with areas and width constrained were used for fitting core levels of 
different spins.

Figure S14. Mott-Schottky plots of (a) Sn-Pyro-900-1.2, (b) Sn-TTB-1100-1.2, (c) Sn-TTB-1300-

1.2, (d) Sn-TTB-1300-2.0. The electrochemical tests were performed under aqueous 

KOH/H3BO3 (0.5 M, pH=9.0) buffer in the dark, with a multi-sine data collection mode.
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Figure S15. Electrochemical impedance spectra (EIS) measurements. (a,b) The EIS spectra and 

(c,d) The phase plots of the Sn-Products. The electrochemical tests were performed under 

aqueous KOH/H3BO3 (0.5 M, pH=9.0) buffer with 0.2 M Na2SO3 in the presence of LED 

455nm light, 39mW/cm2. All the samples were decorated with CoOx.



13

Figure S16. (a) Photocurrent density-potential curves of Sn-TTB products with and without CoOx 

as “OER” cocatalyst in the absence of the Na2SO3 as the hole scavenger with chopping AM1.5G 

illumination, 100 mW/cm2. (b) The PEC stability tests of Sn-TTB products with and without CoOx 

as “OER” cocatalyst in the absence of hole scavenger by chronoamperometric (CA) graphs were 

measured at 1.00VRHE with chopping AM1.5G illumination, 100 mW/cm2.


