Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Constructing 2D/2D interfacial contact in ReS₂/TiO₂ via Ti-S bond for efficient charge transfer in photocatalytic hydrogen production

Yanan Wang^a, Rongrong Shi^a, Kai Song^a, Chunyang Liu^a and Fang He^{*, a}

^aSchool of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China.

*Corresponding Author. E-mail: fanghe@tju.edu.cn.

The gas reactions in chemical vapor deposition

In the experiment, NH_4ReO_4 decompose thermally into gaseous Re_2O_7 volatilizing according to following equation¹:

$$2NH_4ReO_4(s) + (3/2)O_2(g) = Re_2O_7(g) + 4H_2O(g) + N_2(g)$$
(1)

 Re_2O_7 obtained by thermal decomposition of NH_4ReO_4 may be further oxidized into ReO_4 or deoxidized into ReO_3 , ReO_2 and even Re at high temperatures.

$$Re_{2}O_{7}(g) + (1/2)O_{2}(g) = 2ReO_{4}$$
(2)

$$\operatorname{Re}_{2}O_{7}(g) = 2\operatorname{Re}O_{3} + (1/2)O_{2}(g) \text{ (bellow 527 °C)}$$
 (3)

$$Re_{2}O_{7}(g) = 2ReO_{2} + (3/2)O_{2}(g) \text{ (above 527 °C)}$$
(4)

$$\operatorname{ReO}_{3}(g) = 2\operatorname{ReO}_{2} + (1/2)\operatorname{O}_{2}(g)$$
 (5)

$$2\text{ReO}_2(g) = 2\text{Re} + 2\text{O}_2(g) \tag{6}$$

In the experiment, the above reaction cannot proceed completely. After kept for a certain period of time (10 min) at the temperature (700 °C) of CVD, ReS₂ nanosheets were obtained by direct sulfidization of $\text{ReO}_2^{2, 3}$ and large amount of SO₂ are released⁴. Finally, ReS₂ nanosheets are deposited on the TiO₂ surface via Ti-S bond to form 2D/2D interfacial contact in ReS₂/TiO₂.

Figure S1 XRD patterns of TiO₂ calcined at different temperatures for 1 h (a, b) and calcined at 800 °C for 3h (black) in (a); SEM images of 550TiO₂ (c), 800TiO₂ (d) and 900TiO₂ (e).

Figure S2 (a, b) TEM images of 800TiO₂, the inset C is the fringe spacing of the region C and D is the diffraction spots of the region D in Figure S2.

Figure S3 (a) UV-vis absorption spectra; (b) photocurrent density-time curves of 550TiO₂ and 800TiO₂ and (c) Comparison of the photocatalytic hydrogen production activities of TiO₂.

Ultraviolet–visible (UV–vis) spectra are employed to investigate the optical absorption of TiO₂. As shown in Figure S3a, 550TiO₂ and 800TiO₂ have similar optical absorption range, mainly light absorption in the UV region (\leq 400 nm). As observed in Figure S3b, the transient photocurrent responses of 550TiO₂ and 800TiO₂ are measured at a bias potential of 0.6 V under UV-vis irradiation. The two photo-electrodes displayed a mild photocurrent response in the dark. When the light turns on, 800TiO₂ presents a higher photocurrent than single phase (550TiO₂), suggesting that the mixed phases TiO₂ has stronger photocurrent response and lower recombination efficiency of photo-generated charge carriers. Subsequently, the photocatalytic hydrogen production tests are carried out under UV-vis irradiation. As depicted in Figure S3c, the two mixed phases TiO₂ (800TiO₂ and 900TiO₂) show a significant increase in the hydrogen evolution performance, compared with the anatase TiO₂ (550TiO₂).

Anatase TiO ₂		Anatase TiO ₂			
Raman peak (cm ⁻¹)	Assignment	Raman peak (cm ⁻¹)	Assignment	Raman peak (cm ⁻¹)	Assignment
143.4	$E_{g(1)}$	143.4	$\mathbf{B}_{1\mathbf{g}}$	148.7	E_{g}
195.8	$E_{g(2)}$			211.0	A _g -like
396.3	$B_{g(1)}$			305.2	E _g -like
515.7	$A_{g(1)}$				C
515.7	$B_{g(2)}$				
638.9	$E_{g(3)}$				

Table S1 Observed Raman peaks (cm⁻¹) of TiO₂, ReS₂ and their corresponding assignments.

Figure S4 SEM images (a, b), XRD pattern (c) and Raman spectra (d) of ReS₂.

Figure S5 XPS survey spectra of ReS_2 , $800TiO_2$ and $40-ReS_2/800TiO_2$.

Figure S6 Four possible related structures accompanied by Ti-S and Re-O bonds and their corresponding adsorption energies. The top view on the left and the side view on the right. (a) one S atom adsorbed on the defective TiO₂ surface accompanied by Ti-S bond; (b) one Re atom adsorbed on the defective TiO₂ surface accompanied by Re-O bond; (c) one S atom adsorbed on the ideal TiO₂ surface accompanied by Ti-S bond; (d) one Re atom adsorbed on the ideal TiO₂ surface accompanied by Re-O bond.

Figure S7 (a, b) SEM images, (c) TEM image and (d) element mapping images of ReS₂/H-TiO₂.

Synthesis of ReS₂/H-TiO₂:

To gain more O vacancies in the TiO_2 surface, $800TiO_2$ is annealed in the tube furnace under H₂/Ar mixture gas (the gas flow ratio is 100/100 sccm) at 600 °C for 1h, denoted as H-TiO₂. ReS₂/H-TiO₂ composites were prepared by CVD at 700 °C for 10 min, which is the same weight ratio as 40-ReS₂/800TiO₂.

Figure S8 (a) XRD pattern, (b) TEM and (c) HRTEM images of 40-ReS₂/800TiO₂ after 9 h cycles.

Figure S9 (a) XPS survey spectra of 40-ReS₂/800TiO₂ after 9 h cycles, (b) S 2p peaks of 40-ReS₂/800TiO₂ and 40-ReS₂/800TiO₂ after 9 h cycles.

Figure S10 (a) Comparison of the photocatalytic hydrogen production activities of ReS₂/TiO₂; SEM images of ReS₂/900TiO₂ (b, c) and physical ReS₂+TiO₂ mixtures (d).

Figure S10b and c show the morphology of $\text{ReS}_2/900\text{TiO}_2$, which is very different from $\text{ReS}_2/800\text{TiO}_2$. Because the calcination temperature of 800TiO_2 is higher than that of 900TiO_2 , there are more O vacancies on the surface of 900TiO_2 , which causes the increased loading of ReS_2 nanosheets, as shown in Figure S10b and c. Not only the loading of ReS_2 nanosheets increased, but also the agglomeration of ReS_2 nanosheets arose and ReS_2 nanosheets coated small-sized TiO_2 . With the increase of the calcination temperature, the rutile ratio in TiO_2 increased (from 11% to 51%). It is possible that the state of rutile surface is not conducive to the growth of ReS_2 , thus, ReS_2 is more likely to agglomerate to reduce the surface energy. To sum up, the increase of O vacancies and rutile ratio is the main reason for the agglomeration and the encapsulation of ReS_2 nanosheets, which also causes the photocatalytic hydrogen evolution performance of $40\text{-ReS}_2/900\text{TiO}_2$ to be inferior to that of $40\text{-ReS}_2/800\text{TiO}_2$.

Figure S11 (a) the plots of $(\alpha hv)^2$ versus energy (hv) for the band gap energies of ReS₂, 800TiO₂ and 40-ReS₂/800TiO₂; (b) Mott-Schottky plots of ReS₂ and 800TiO₂.

In order to obtain the energy band diagrams of $\text{ReS}_2/\text{TiO}_2$, the optical absorption properties of 800TiO₂, ReS_2 and 40- $\text{ReS}_2/800\text{TiO}_2$ are studied by UV-vis absorption spectroscopy (Figure 6d). Figure S11a presents that the band gap energies of 800TiO₂, ReS_2 , and 40- $\text{ReS}_2/800\text{TiO}_2$ are calculated as 3.1, 1.2 and 2.8 eV, respectively, according to the formula $\alpha hv = A(hv - E_g)^2$ (where α = absorbance, h = Planck's constant, and v = frequency). Hence, the combination of cocatalyst ReS_2 improves the optical absorption of TiO₂, which induces more photo-generated carriers to participate in redox reaction. The Mott-Schottky (M-S) plots of 800TiO₂ and ReS_2 shown in Figure S11b, the conduction band (CB) potential can be measured to be -0.42 and -0.1 V (vs RHE), corresponding to 800TiO₂ and ReS_2 , respectively. The band gap energy (Eg) of 800TiO₂ and ReS_2 is calculated by the Tauc plot, thus, their valence band (VB) are calculated to be +2.68 and +1.10 V, respectively.

Figure S12 The reactors of photocatalytic hydrogen production test (a) and Photoelectrochemical Measurements (b).

References

- 1. M. Bai, Z.-h. Liu, L.-j. Zhou, Z.-y. Liu and C.-f. Zhang, *Transactions of Nonferrous Metals Society of China*, 2013, **23**, 538-542.
- 2. X.-h. Fan, Q. Deng, M. Gan and X.-l. Chen, *Transactions of Nonferrous Metals Society of China*, 2019, **29**, 840-848.
- 3. Q. Feng, M. Li, T. Wang, Y. Chen, X. Wang, X. Zhang, X. Li, Z. Yang, L. Feng, J. Zheng, H. Xu, T. Zhai and Y. Jiang, *Applied Catalysis B: Environmental*, 2020, **271**.
- 4. K. S. Coleman, J. Sloan, N. A. Hanson, G. Brown, G. P. Clancy, M. Terrones, H. Terrones and M. L. H. Green, *Journal of the American Chemical Society*, 2002, **124**, 11580-11581.