Supporting	Information
------------	-------------

Lithium-ion Batteries Recycling Technology Based on Controllable Product Morphology and Excellent Performance

5 Jiao Lin^{*a,b*}, Ersha Fan^{*a,b,d*}, Xiaodong Zhang^{*a,b*}, Ruling Huang^{*a*}, Xixue Zhang^{*a*}, Renjie

7 a. Beijing Key Laboratory of Environmental Science and Engineering, School of

8 Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081,

9 China.

1

10 b. Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy

11 Testing, Guangzhou, Guangdong 511447, China.

12 c. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081,

13 China.

14 d. Advanced Technology Research Institute, Beijing Institute of Technology, Jinan

15 250300, China

- 16 Corresponding authors: Renjie Chen, Li Li
- 17 E-mail: chenrj@bit.edu.cn,

lily863@bit.edu.cn

⁶ Chen^{a,c,d}*, Feng Wu^{a,b,c,d}, Li Li^{a,b,c,d}*

Figure S1 The separated Li₂SO₄ solution and Co₃O₄ powder.

Figure S2 XRD patterns of the roasted powder.

Figure S3 The XRD patterns of the Li_2CO_3 powder.

Figure S4 SEM images of Co₃O₄ particles

Figure S5 Particle size analysis results of the Co₃O₄ particles

Figure S6 (a)SEM image and (b)XRD patterns of commercial Co3O4 powder.

Figure S7 Cycle performance of the nano-Co₃O₄ electrode at a current density of 50 mA g⁻¹.

Figure S8 (a) Cycle performance of the re-synthesized LiCoO₂ powder at 1C (1C=150 mA h/g), (b) Discharge curves for the re-synthesized LiCoO₂ powder at different current densities

Figure S9 The XRD patterns of scrap CoSO₄·7H₂O powder. (The powder was obtained by heating CoSO4·7H2O to 150°C for 20min.)

Figure S10 The XRD patterns of scrap CoSO₄·7H₂O powder. (The powder was obtained by heating CoSO4·7H2O to 260°C for 20min.)

Figure S11 The XPS survey spectra of the $Li_{1-x}CoO_2$ and Co_3O_4 .

NO.	Sample	Initial capacity (mA h/g)	Charge/discharge condition	Performance (mA h/g)	Ref.
1	nanoparticles	1140	50 mA/g, 100 cycles	987.2	This work
2	Co ₃ O ₄ @Carbon Nanotube	1250	100 mA/g, 60 cycles	781	[1]
3	nanotube	928	50 mA/g, 80 cycles	380	[2]
4	nanoparticles	1109	50 mA/g, 30 cycles	970	[3]
5	hollow microspheres	1087.2	50 mA/g, 30 cycles	792.7	[4]
6	nanoparticles	1118.5	100 mA/g, 200 cycles	955.5	[5]
7	hollow-structured	1107	50 mA/g, 50 cycles	880	[6]
8	porous nanoflaked	1108	0.2 C, (1 C = 890 mA/g) ,100 cycles	908	[7]
9	MOF	1200	200 mA/g, 100 cycles	924.1	[8]

Table S1 A brief review of published laboratory work on Co_3O_4

Table S2 The fit result of EIS parameters

Samples			I	Element (Ω)				
	R _s	R _{ct}	CPE ₁ -T	CPE ₁ -P	W ₁ -R	W ₁ -T	W ₁ -P	
			_					

Nano-Co ₃ O ₄	3.175	66.78	0.000003.4241	0.76968	137.8	0.27638	0.58672
Commercial Co ₃ O ₄	1.95	146.2	0.00015207	0.56753	306.1	0.52531	0.69768

Table S3 Refined lattice parameters of all samples

Samples	a	c	volume	c/a	$I_{(003)}/I_{(104)}$	$I_{(006)} + I_{(012)} / I_{(104)}$
Li _{1-x} CoO ₂	2.8144	14.0408	96.3149	4.9889	3.0347	0.9275
C0 ₃ O ₄ →LiC0O ₂	2.8143	14.0451	96.3356	4.9907	5.0975	0.4035
Commercial LiCoO2	2.8159	14.0499	96.4798	4.9895	12.1334	0.7169

D		Peak binding	energy	
Pe	ак ——	Li _{1-x} CoO ₂	Co ₃ O ₄	
		284.8	284.8	
C 1s		285.97	286.25	
		288.66	288.3	
		529.21	529.87	
0	1s	529.75	531.37	
		531.4	532.54	
	Co _I P3	779.27	780.04	
Co 2n	Co _I P1	794.35	795.34	
C0 2p	Co _{II} P3	780.62	781.51	
	Co _{II} P1	795.86	796.87	

Table S4 Peak binding energies for all deconvoluted C 1s, O 1s and Co 2p peaks from XPS.

Co ion		Atomic or	bital (3d)		
Co ³⁺	1	1	1	1	
Co ²⁺	1	1	1	1	1

Table S5 Electronic configuration of Co ion

Table S6 The bond length of the reactants

LiCoO ₂	Bond length/Å
Li-O	1.63147
Li-Co	1.61547
Co=O	1.56039
CoSO4	Bond length/Å
CoSO ₄ S=O	Bond length/Å
CoSO ₄ S=O S-O	Bond length/Å 1.42715 1.61271

Reference:

Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler,
 C.; Xia, Y.; Zhao, D.; Schuth, F., Controllable Synthesis of Mesoporous Peapod-like
 Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries.
 Angew Chem Int Ed Engl 2015, 127, 7166-7170.

2. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A., Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. *Advanced Materials* **2008**, *20* (2), 258-262.

3. Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X.; Kong, X.; Chen, Q., Co3O4 Nanocages for High-Performance Anode Material in Lithium-Ion Batteries. *The Journal of Physical Chemistry C* **2012**, *116* (12), 7227-7235. Wang, J.; Yang, N.; Tang, H.; Dong, Z.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H.; Tang, Z.; Wang, D., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. *Angew Chem Int Ed Engl* 2013, *52* (25), 6417-6420.

5. Xu, G.-L.; Li, J.-T.; Huang, L.; Lin, W.; Sun, S.-G., Synthesis of Co3O4 nanooctahedra enclosed by facets and their excellent lithium storage properties as anode material of lithium ion batteries. *Nano Energy* **2013**, *2* (3), 394-402.

 Deli Wang, Y. Y., Huan He, Jie Wang, Weidong Zhou, and Hector D. Abru~na,, Template-Free Synthesis of HollowStructured Co3O4 Nanoparticles. *ACS nano* 2015, 9 (2), 1775-1781.

 Wen, J.; Xu, L.; Wang, J.; Xiong, Y.; Ma, J.; Jiang, C.; Cao, L.; Li, J.; Zeng, M., Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries. *Journal of Power Sources* 2020, *474*.
 Y.-H.; Li, J.-H.; Xu, Z.-F.; Liu, J.-M.; Liu, S.-J.; Wang, R.-X., Metal–organic framework derived porous nanostructured Co3O4 as high-performance anode materials for lithium-ion batteries. *Journal of Materials Science* 2021, *56* (3), 2451-2463.