Supporting Information

An all-organic symmetric battery base on a triquinoxalinylene

derivative with different redox voltage active sites and large

conjugation system

Yi Zhang^a, Zhaopeng Sun^a, Xiangyue Kong^a, Yilin Lin^a and Weiwei Huang^{a,b*}

^a School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China

*Corresponding author.

E-mail address: huangweiwei@ysu.edu.cn (W. Huang)

Contents

1. The structural characterization of 3Q and 3BQ

- Fig. S1. The ESI-MS spectra of (a) 3Q and (b) 3BQ.
- Fig. S2. The FTIR spectrums of (a) 3Q and (b) 3BQ.
- Fig. S3. The ¹H NMR spectrums of (a) **3Q** (CDCl₃) and (b) **3BQ** (DMSO- d_6).

2. The morphology characterization of 3Q and 3BQ

- Fig. S4. SEM images of 3Q and 3BQ.
- 3. Electrochemical performance of 3BQ and 3Q cathodes
- Fig. S5. Schematic of the optimized structure of 3BQ.
- Fig. S6. CV curve of 3Q at a scan rate of 0.2 mV s⁻¹.
- Fig. S7. The electrochemical redox mechanism of 3Q.¹
- Fig. S8. Cycle performance of 3BQ with different Ketjen Black content at 0.2 C.
- Fig. S9. Electrochemical performance of 3BQ cathode in Li-ion half-cell between 1.3 and 3.9 V (vs Li/Li⁺) in 1 M
- LiTFSI in DOL/DME (1/1, v/v). (a) Rate performance at different current densities; (b) cycling performance at 1 C.
- Fig. S10. (a) Cycle performance and (b) charge-discharge curves of 3BQ cathode at 0.2 C.
- Fig. S11. Cyclic performance of Ketjen Black in different voltage ranges (Ketjen Black : PVDF = 9:1).
- Fig. S12. Charge-discharge curves of 3Q at different rates.
- Fig. S13. The Nyquist plots of 3Q and 3BQ as cathodes during the cycles.

4. Lithium storage mechanism of 3BQ cathode

Fig. S14. The optimized structure of 3BQ-xLi (x=1~12) based on DFT calculation at the B3LYP/6-311G (d, p).

Fig. S15. Ex-situ XRD patterns of **3BQ** cathode at different states.

5. Electrochemical performance of 3BQ anode

Fig. S16. The CV curves of 3BQ anode in the voltage range of 0.01~3 V at a scan rate of 0.2 mV s⁻¹.

Fig. S17. The charge-discharge curves of 3BQ anode in the initial 3 cycles at a current density of 50 mA g⁻¹.

- Fig. S18. Proposed superlithiation reaction mechanism of 3BQ anode.
- Fig. S19. (a) Rate performance and (b) charge-discharge curves of 3BQ anode at different current densities.
- Fig. S20. Cycle performance of 3BQ anode at 2500 mA g⁻¹ for 500 cycles.

6. Charge-discharge curves of all-organic symmetric batteries with different mass ratios of anode and cathode

- Fig. S21. Charge-discharge curves at different mass ratios of anode and cathode at 0.2 C.
- 7. Comparison of electrochemical performance of other organic cathodes

 Table S1. Comparison of electrochemical performance of other organic cathodes.

8. Computational details

Table S2. The total energies and the binding energies (ΔE) in Hartree (eV) calculated at the B3LYP/6-311G (d, p)

level in EC/DMC solvent.

Table S3. Sum of electronic and thermal Gibb free energies in Hartree (eV) of optimized structures and the redox

potentials (V) calculated at the B3LYP/6-311G (d, p) level in EC/DMC solvent.

9. Comparison of electrochemical performance of other all-organic batteries

 Table S4. Comparison of electrochemical performance of other all-organic batteries.

Equation S1. Lithium ion diffusion coefficient for 3Q and 3BQ.

10. References

Fig. S1. The ESI-MS spectra of (a) 3Q and (b) 3BQ.

Fig. S2. The FTIR spectrums of (a) 3Q and (b) 3BQ.

Fig. S3. The ¹H NMR spectrums of (a) 3Q (CDCl₃) and (b) 3BQ (DMSO- d_6).

Fig. S4. SEM images of 3Q and 3BQ.

Fig. S5. Schematic of the optimized structure of 3BQ.

Fig. S6. CV curve of 3Q at a scan rate of 0.2 mV s⁻¹.

Fig. S7. The electrochemical redox mechanism of 3Q.¹

Fig. S8. Cycle performance of 3BQ with different Ketjen Black content at 0.2 C.

Fig. S9. Electrochemical performance of **3BQ** cathode in Li-ion half-cell between 1.3 and 3.9 V (vs Li/Li⁺) in 1 M LiTFSI in DOL/DME (1:1, v/v). (a) Rate performance at different current densities; (b) cycling performance at 1 C.

Fig. S10. (a) Cycle performance and (b) charge-discharge curves of **3BQ** cathode at 0.2 C.

Fig. S11. Cyclic performance of Ketjen Black in different voltage ranges (Ketjen Black : PVDF = 9:1).

Fig. S12. Charge-discharge curves of 3Q at different rates.

Fig. S13. The Nyquist plots of 3Q and 3BQ as cathodes during the cycles. Insets are the corresponding equivalent circuit, R_{ct} is the charge-transfer resistance, W_0 is the Warburg impendence and CPE_1 is the double-layer capacitance.

Fig. S14. The optimized structure of 3BQ-xLi (x=1~12) based on DFT calculation at the B3LYP/6-311G (d, p).

Fig. S15. Ex-situ XRD patterns of 3BQ cathode at different states.

Fig. S16. The CV curves of 3BQ anode in the voltage range of 0.01~3 V at a scan rate of 0.2 mV s⁻¹.

Fig. S17. The charge-discharge curves of 3BQ anode in the initial 3 cycles at a current density of 50 mA g⁻¹.

Fig. S18. Proposed superlithiation reaction mechanism of 3BQ anode.

Fig. S19. (a) Rate performance and (b) charge-discharge curves of 3BQ anode at different current densities.

Fig. S20. Cycle performance of **3BQ** anode at 2500 mA g $^{\text{-1}}$ for 500 cycles.

Fig. S21. Charge-discharge curves at different mass ratios of anode and cathode at 0.2 C.

				Initial capacity	Capacity (mAh g	
Molecular	Cathode composition	Mass ratio	Electrolytes	(mAh g ⁻¹)	¹)/Cycle number/	Ref.
structure				/Current density	Current density	
	BBQ:graphene:PVDF	60:30:10	1 M LITFSI in DOL/DME	293/0.1	149/100/0.1	2
	C4Q:SuperP:PVDF	60:25:15	1 M LiPF ₆ in EC/DMC	427/0.1	28/50/0.1	3
ڔ۠ؠڔؙۑ۬ڔڹ	P5Q:Carbon Black:PVDF	30:60:10	4.2 M LITFSA in AN	405/0.2	310/900/0.2	4
	C ₆ O ₆ :KB:PVDF	50:40:10	0.3 M LiTFSI in [PY13] [TFSI]	902/0.02	239/200/0.5	5
	ABBOH:CMK-3/SP/La133	4:4:1:1	3 M LiTFSI in DOL/DME	-	194/250/0.2	6
NH ₂	DANQ:SP:PVDF	60:30:10	1 M LITFSI in DME/DIOX	250/0.2	248/500/0.2	7
ŶĠŶĠŶŔ	C6Q:KB:PVDF	60:30:10	1 M LiPF_6 in EC/DMC	423/0.1	216/100/0.1 195/300/0.1	8
	6CN:KB:PTFE	48.1:47.9:3.5	PEO membranes	300/0.2	250/30/0.2	9
HOOC	HATNTA:GO:PVDF	50:40:10	1 M LiPF_{6} in EC/DEC.	226/0.16	193/90/0.2	10
	2Q:RGO:PVDF	30:60:10	1 M LiTFSI in DOL/DME	372/1	359/200/1	1

Table S1. Comparison of electrochemical performance of other organic cathodes.

	3Q:RGO:PVDF	30:60:10	1 M LITFSI in DOL/DME	395/1	222/10000/20	1
-forget	HATNTI-Pr:KB:PVDF	60:30:10	1 M LITFSI in DOL/TEGDME	317/0.1	254/0.1/100	11
	HATN:GO:PVDF	50:40:10	1 M LiPF_6 in EC/DEC.	410/0.1	226/90/0.1	10
	3BQ:KB:PVDF	50:40:10	1 M LiPF ₆ in EC/DMC	506/0.2	248/300/0.2	This work
	HATAQ:KB:PVDF	30:60:10	1 M LiTFSI in DOL/DME(1/2 V/V) with 0.3 wt% LiNO $_3$	426/0.4	209/1000/19	12

			
Spin state 3BQ 3BQ-1Li 3BQ-2Li 3BQ-3Li 3BQ-3Li 3BQ-4Li 3BQ-5Li 3BQ-6Li 3BQ-6Li 3BQ-7Li	Energy	Reaction processes	$\Delta E = E_{xLi} - (E_{(x-1)Li} + E_{Li(0)})$
	(ev×10*)		$\Delta E = E_{xLI} - (E_{(x-1)LI} + E_{LI(0)})$ -0.1403 (-4.0217) -0.1403 (-3.8173) -0.1551 (-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829 (-2.2545) -0.0829 (-2.2559) -0.0606 (-1.6490) -0.0743 (-2.0219) -0.0609 (-1.6572) -0.0558 (-1.5184)
	-2159.2299		
	(-5.8756)		0.4.07
3BQ-1Li	-2166.8894	3BQ→3BQ-1Li	$\Delta E = E_{xLi} - (E_{(x-1)Li} + E_{Li(0)})$ -0.1497 (-4.0217) -0.1403 (-3.8173) -0.1551 (-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829 (-2.2545) -0.0829 (-2.2559) -0.0606 (-1.6490) -0.0743 (-2.0219) -0.0609 (-1.6572) -0.0558 (-1.5184)
	(-5.8965)		
3BQ-2Li	-2174.5395	3BQ-1Li→3BQ-2Li	$\Delta E = E_{xLi} - (E_{(x-1)Li} + E_{Li(0)})$ -0.1497 (-4.0217) -0.1403 (-3.8173) -0.1551 (-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829 (-2.2545) -0.0829 (-2.2559) -0.0829 (-2.2559) -0.0606 (-1.6490) -0.0743 (-2.0219) -0.0609 (-1.6572) -0.0558 $(-1 5184)$
	(-5.9173)		(-3.8173)
3BQ-3Li	-2182.2044	3BQ-2Li→3BQ-3Li	$\begin{split} \Delta E = E_{xLI} - \left(E_{(x-1)LI} + E_{LI(0)}\right) \\ & -0.1497 \\ (-4.0217) \\ & -0.1403 \\ (-3.8173) \\ & -0.1551 \\ (-4.2206) \\ & -0.1103 \\ (-3.0011) \\ & -0.1105 \\ (-3.0011) \\ & -0.1105 \\ (-3.0076) \\ & -0.0908 \\ (-2.4709) \\ & -0.0829 \\ (-2.2545) \\ & -0.0829 \\ (-2.2545) \\ & -0.0829 \\ (-2.2559) \\ & -0.0829 \\ (-2.2559) \\ & -0.0829 \\ (-2.2559) \\ & -0.0606 \\ (-1.6490) \\ & -0.0743 \\ (-2.0219) \\ & -0.0609 \\ (-1.6572) \\ & -0.0558 \\ (-1.5184) \end{split}$
	(-5.9382)		
3BQ-4Li	-2189.8247	3BQ-3Li→3BQ-4Li	-0.1497 (-4.0217) -0.1403 (-3.8173) -0.1551 (-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829 (-2.2559) -0.0606
	(-5.9589)		
3BQ-5Li	-2197.4541	3BQ-4Li→3BQ-5Li	-0.1105 (-3.0076) -0.0908
	(-5.9797)		
3BO-6Li	-2205.0745	3BQ-5Li→3BQ-6Li	(-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829
0000	(-6.0004)		
3BO-7Li	-2212.6751	3BQ-6Li→3BQ-7Li	(-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829
	(-6.0211)		
3BO-8Li	-2220.2678	3BU-211-73BU-811	(-3.8173) -0.1551 (-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829 (-2.2559) -0.0606 (-1.6490) -0.0743 (-2.0219)
500 00	(-6.0417)		
	-2227.1716	380-811-2380-011	-0.0606
300-96	(-6.0606)		(-1.6490)
200 101	-2235.4240	200 01: 2200 101:	-0.0743
	(-6.0830)	3BQ-9Li→3BQ-10Li (-6.0830) (-2.0219	(-2.0219)
200 111	-2242.9947		-0.0609
3BQ-11Li	(-6.1036)	3RÚ-10FI→3RÚ-11FI	(-1.6572)
	-2250.5603	200 111: 2200 121:	-0.0558
3BQ-12LI	(-6.1242)	3BQ-11Li→3BQ-12Li	-0.1497 (-4.0217) -0.1403 (-3.8173) -0.1551 (-4.2206) -0.1103 (-3.0011) -0.1105 (-3.0076) -0.0908 (-2.4709) -0.0829 (-2.2545) -0.0829 (-2.2545) -0.0829 (-2.2559) -0.0829 (-2.2559) -0.0606 (-1.6490) -0.0743 (-2.0219) -0.0609 (-1.6572) -0.0558 (-1.5184)

Table S2. The total energies and the binding energies (ΔE) in Hartree (eV) calculated at the B3LYP/6-311G (d, p)

E_{Li(0)}= -7.5098 Hartree

level in EC/DMC solvent.

Table S3. Sum of electronic and thermal Gibb free energies in Hartree (eV) of optimized structures and the redox

Snin state	Energy	Position processos	Calculated notantial (V/vc. Li/Lit)		
Spinstate	(eV×10 ⁴)	Reaction processes			
200	-2159.2944				
360	(-5.8759)				
3BQ-1Li	-2166.9558	200-2200 11	2 7580		
	(-5.8967)		5.7565		
200 213	-2174.6061	200 11: 2200 21:	3.4584		
SBQ-2LI	(-5.9175)				
200 211	-2182.2733	200 21: 220 21:	3.9172		
3BQ-3LI	(-5.9384)	3BQ-2LI73BQ-3LI			
280 415	-2189.8926		2 6121		
36Q-4LI	(-5.9591)	3BQ-3LI-73BQ-4LI	2.0121		
	-2197.5188		2.8035		
360-36	(-5.9799)	3BQ-4LI-73BQ-3LI			
	-2205.1397	3BQ-5Li→3BQ-6Li	2 6576		
360-06	(-6.0006)		2.0370		
3BO-7Li	-2212.7440		2 2038		
360-76	(-6.0213)		2.2038		
3BO-8Li	-2220.3379		1 9737		
3BQ-9LI	(-6.0420)		1.9232		
380-9Li	-2227.9281		1 8236		
(-6.0626)	1.0250				
3BQ-10Li	-2235.4936		1 1502		
	(-6.0832)	30Q-961 /30Q-1061	1.1302		
3BO-11Li	-2243.0638		1 2780		
	(-6.1038)	3DQ-10Li /3DQ-11Li	1.2700		
3BO-12Li	-2250.6307	3BO-11Li→3BO-12Li	1 1882		
3BQ-17FI	(-6.1244)	3BQ-11LI73BQ-12LI	1.1002		

potentials (V) calculated at the B3LYP/6-311G (d, p) level in EC/DMC solvent.

E_{Li(0)}= -7.5232 Hartree

				Initial capacity	Capacity (mAh g	
Molecular	Cathode composition	Mass ratio	Electrolytes	(mAh g ⁻¹)	¹)/Cycle number/	Ref.
structure				/Current density	Current density	
	BBQ:CMK-3:GO:La133	40:50:10:10	1 M LITFSI in DOL/DME	316/1	~80/1000/2	13
	ABB₄OLi:CMK-3:SP:La133	40:40:10:10	3 M LITFSI in DOL/DME	282/0.2	63/200/0.2	6
	Li ₄ C ₈ H ₂ O ₆ :CB:PVDF	65:30:5	1 M LiPF_6 in EC/DMC	223/0.1	212/50/0.1	14
$\left \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right _{n}$	PDB:CNTs:PVDF	30:50:20	1 M LiTFSI in DOL/DME	249/0.06	119/250/3	15
	PI1:KB:PVDF	40:40:20	1 M LiPF_{6} in EC/DMC	77/0.2	72/1000/0.2	16
	TCAQ:SP:PVDF	40:55:5	1 m LiClO₄ in EC/DMC (3/7 v/v)	105/1	71/250/1	17
$\{ \begin{matrix} H \\ H$	Poly-BQ1:SP:PVDF	50:40:10	1 M LITFSI in DOL/DME	351.5/0.1	203.4/400/2	18
	3BQ:KB:PVDF	50:40:10	1 M LiPF₀ in EC/DMC	483/0.2	172/300/0.2	This work

Table S4. Comparison of electrochemical performance of other all-organic batteries.

Equation S1. Lithium ion diffusion coefficient for 3Q and 3BQ.

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$

where A is the surface area of the electrode, n is the number of the electrons per molecule attending the electronic transfer reaction, F is the Faraday constant, C is the concentration of lithium ion in electrode, R is the gas constant, T is the room temperature in our experiment, σ is the slope of the line $Z' \sim \omega^{-1/2}$ which can be obtained from the line of $Z' \sim \omega^{-1/2}$, respectively.

References

- 1 C. Peng, G. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J. Yang, M. Ng, Y. Hu, Y. Yang, M. Armand and K. Loh, *Nat. Energy*, 2017, **2**, 17074.
- 2 J. Yang, P. Xiong, Y. Shi, P. Sun, Z. Wang, Z. Chen and Y. Xu, Adv. Funct. Mater., 2020, 30, 1909597.
- 3 S. Zheng, J. Hu and W. Huang, Inorg. Chem. Front., 2017, 4, 1806.
- 4 W. Zhang, H. Sun, P. Hu and W. Huang, *EcoMat*, 2021, 1.
- 5 Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Li, and J. Chen, Angew. Chem. Int. Ed., 2019, 58, 7020.
- 6 Y. Hu, W. Tang, Q. Yu, C. Yang and C. Fan, ACS Appl. Mater. Inter., 2019, 58, 32987.
- 7 J. Lee, H. Kim and M. Park, Chem. Mater., 2016, 28, 2408.
- 8 X. Zhang, W. Zhou, M. Zhang, Z. Yang and W. Huang, J. Energy Chem., 2021, 52, 28.
- 9 Y. Hanyu, T. Sugimoto, Y. Ganbe, A. Masuda and I. Honma, J. Electrochem. Soc., 2013, 161, A6.
- 10 J. Wang, K. Tee, Y. Lee, S.N. Riduan and Y. Zhang, J. Mater. Chem. A, 2018, 6, 2752.
- 11 Z. Wang, Q. Qi, W. Jin, X. Zhao, X. Huang and Y. Li, ChemSusChem, 2021, 14, 3858.
- 12 M. Wu, N. Lu, T. Chen, H. Lyu, T. Huang, S. Dai, X. Sun, A. Ivanov, J. Lee, I. Popovs and W. Kaveevivitchai, *Adv. Energy. Mater.*, 2021, **11**, 2100330.
- 13 Z. Yao, W. Tang, X. Wang, C. Wang, C. Yang and C. Fan, J. Power Sources, 2020, 448, 227456.
- 14 S. Wang, L. Wang, K. Zhang, Z. Zhu, Z. Tao and J. Chen, *Nano Lett.*, 2013, **13**, 4404.
- 15 J. Xie, Z. Wang, Z. Xu and Q. Zhang, Adv. Energy. Mater., 2018, 8, 1703509.
- 16 N. Casado, D. Mantione, D. Shanmukaraj and D. Mecerreyes, ChemSusChem, 2020, 13, 2464.
- 17 A. Wild, M. Strumpf, B. Häupler, M. Hager and U. Schubert, Adv. Energy. Mater., 2017, 7, 1601415.
- 18 Y. Zhao, M. Wu, H. Chen, J. Zhu, J. Liu, Z. Ye, Y. Zhang, H. Zhang, Y. Ma, C. Li and Y. Chen, *Nano Energy*, 2021, 86, 106055.