Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Synthesis of vanadium based binary oxides with yolk-shell structure

and its derived electrocatalysts

Meiqin Shi,^a Fei Peng,^a Yu Qin,^a Fengjiao Li,^a Yuanhang Nie,^a Jun Fang,^a Xiaoling Lang,^{b*} Xinbiao Mao ^{a*}

^a College of Chemical Engineering, Zhejiang University of Technology, State Key Laboratory Breeding Base of

Green Chemistry-Synthesis Technology, Hangzhou 310032, Zhejiang, P. R. China

^b College of Chemistry and Materials Science, Longyan University, Longyan, 364000, Fujian, P. R. China

*Correspondence: ahshio@163.com, xbmao@zjut.edu.cn

Experimental details

Electrochemical measurements for HER

All the electrochemical measurements were operated with a CHI660D electrochemical workstation (CH Instruments, Inc. Shanghai) in a conventional three-electrode system consisting of a working electrode, a carbon rod counter electrode and a saturated silver chloride electrode and 0.5M H_2SO_4 was used as the electrolyte. Working electrode was fabricated by dispersing 5mg of asprepared catalyst powder in 360 µL ethanol/40 µL Nafion (5 wt%). After the dispersion was ultrasonicated for 30 min, 10 mL of the catalyst suspension was dropped casted onto a glassy carbon electrode with 5mm in diameter and dried in the air. All potentials presented were referenced to a reversible hydrogen electrode (RHE): E(RHE)=E(Ag/AgCI) + 0.059*pH+ 0.199 and all data referred were corrected by iR compensation. Linear sweep voltammetry (LSV)was recorded at a scan rate of $2mV \cdot s^{-1}$ to obtain the polarization curves. The long-term durability was tested by cyclic voltammetry (CV) scans from 0.1 to -0.3 V vs. RHE with a sweep rate of 100 mVs⁻¹.

Electrochemical measurements for ORR

All measurements were carried out with a CHI 660D electrochemical workstation (Chen-Hua,Shanghai, China) in a standard three-electrode cell. Working electrodes were prepared by mixing the 5mg catalyst with 180 μ L isopropanol and 20 μ L Nafion (5 wt %) by sonication 30 min to form a homogeneous ink. An amount of 4 μ L of catalyst ink was deposited onto the polished surface of a 3 mm RDE made of glassy carbon and dried in the air. A Pt foil (2 cm²) and a Hg/HgO electrode were used as the counter and reference electrode, respectively. All potentials referred to in this paper are converted to the pH-independent reversible hydrogen electrode (RHE):

E(RHE) = E (Hg/HgO) + 0.059*pH + 0.098

In the electrochemical measurements, all the electrodes were pretreated by cycling the potential between -0.7 and 0.3 V (vs Hg/HgO) at a sweep rate of 50 mV·s⁻¹ for 20 cycles to activate electrodes and remove the dissolved oxygen before the ORR activity tests in N₂-saturated 0.1 M KOH solution until a stable cyclic voltammogram was recorded. Then, the electrolyte was saturated with oxygen by bubbling O₂ for 30 min prior to the ORR activity tests. A flow of O₂ was maintained over the electrolyte to ensure O₂ saturation during the recording of CV. Linear-sweep voltammetry (LSV) measurements were conducted under O₂-saturated circumstance by sweeping the potential negatively from 0.3 V to -0.7 V at a scan rate of 5 mV·s⁻¹ with varying rotating speed from 2025 to 400 rpm. The stability tests of the catalysts were conducted by applying a cyclic potential sweep between -0.6 and 0 V in O2-saturated 0.1 M KOH solution, with a scan rate of 50 mV·s⁻¹.

Fig. S1 the WVO_x prepared in absolute ethanol at 200 $^\circ\!\mathrm{C}$ for 6 h.

Fig. S2 the EDS spectrum of WVO_x from the selected red square region and its corresponding mapping images of this region

Fig. S3 TEM images of $MnVO_x(a)$, $FeVO_x(b)$, $CoVO_x(c)$, and $ZnVO_x(d)$ prepared in absolute ethanol.

Fig. S4 SEM images of NiVO_x prepared in absolute ethanol.

Fig. S5 SEM images of WVO_x prepared in CH₃CH₂OH+H₂O (CH₃CH₂OH:H₂O=1:1)

Fig. S6 N₂ adsorption-desorption, and pore size distribution plots of the synthesized catalysts. (a, c, e) $WS_2-V_2O_3-3h$, $WS_2-V_2O_3-6h$, $WS_2-V_2O_3-12h$; (b, d, f) $WS_2-V_3S_4-3h$, $WS_2-V_3S_4-6h$, $WS_2-V_3S_4-12h$

Fig. S7 XPS spectra of WS₂-V₂O₃-3h: (a) W 4f, (c) V 2p, (e) S 2p, (g) O 1s.and WS₂-V₂O₃-6h: (b) W 4f, (d) V 2p, (f) S 2p, (h) O 1s.

Fig. S8 XPS spectra of $WS_2-V_3S_4-3h$: (a) W 4f, (c) V 2p, (e) S 2p, and $WS_2-V_3S_4-6h$: (b) W 4f, (d) V 2p, (f) S

2p.

Fig. S9 XRD patterns of (a)WS₂, (b)V₂O₃ and (c)V₃S₄.

Fig. S10 (a) Polarization curves obtained from WS₂-V₂O₃-12h, WS₂-650, V₃S₄, WS₂-V₃S₄-12h and 20% Pt/C in 0.5 M H₂SO₄ at a scanning rate of 2 mV s⁻¹; All polarization curves are corrected for iR losses except for Pt. (b) Polarization curves of WS₂-V₂O₃-12h, WS₂-950, V₃S₄, WS₂-V₃S₄-12h and 20% Pt/C in O₂-saturated 0.1 M KOH solution with scan rate of 5 mV·s⁻¹.

Table S1. Structural Parameters from Nitrogen Sorption Isotherms of the $WS_2-V_2O_3$ and $WS_2-V_3S_4$ samples which were obtained at different hydrothermal times (3h, 6h and 12h)

sample	BJH pore size (nm)	pore volume (cm ³ /g)	BET surface area (m²/g)
WS ₂ -V ₂ O ₃ -3h	10.45	0.054	25.02
WS ₂ -V ₂ O ₃ -6h	9.71	0.052	29.69
$WS_2-V_2O_3-12h$	10.55	0.055	21.69
$WS_2-V_3S_4-3h$	12.23	0.040	13.37
WS ₂ -V ₂ S ₄ -6h	13.93	0.048	14.39
$WS_2-V_3S_4-12h$	11.98	0.053	17.46