Supporting Information

Synthesis of vanadium based binary oxides with yolk-shell structure and its derived electrocatalysts

${ }^{\text {a College of Chemical Engineering, Zhejiang University of Technology, State Key Laboratory Breeding Base of }}$ Green Chemistry-Synthesis Technology, Hangzhou 310032, Zhejiang, P. R. China
${ }^{\text {b }}$ College of Chemistry and Materials Science, Longyan University, Longyan,364000, Fujian, P. R. China

Electrochemical measurements for HER
All the electrochemical measurements were operated with a CHI660D electrochemical workstation (CH Instruments, Inc. Shanghai) in a conventional three-electrode system consisting of a working electrode, a carbon rod counter electrode and a saturated silver chloride electrode and $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was used as the electrolyte. Working electrode was fabricated by dispersing 5 mg of asprepared catalyst powder in $360 \mu \mathrm{~L}$ ethanol/40 $\mu \mathrm{L}$ Nafion ($5 \mathrm{wt} \%$). After the dispersion was ultrasonicated for $30 \mathrm{~min}, 10 \mathrm{~mL}$ of the catalyst suspension was dropped casted onto a glassy carbon electrode with 5 mm in diameter and dried in the air. All potentials presented were referenced to a reversible hydrogen electrode (RHE): $\mathrm{E}(\mathrm{RHE})=\mathrm{E}(\mathrm{Ag} / \mathrm{AgCl})+0.059 * \mathrm{pH}+0.199$ and all data referred were corrected by iR compensation. Linear sweep voltammetry (LSV) was recorded at a scan rate of $2 \mathrm{mV} \cdot \mathrm{s}^{-1}$ to obtain the polarization curves. The long-term durability was tested by cyclic voltammetry (CV) scans from 0.1 to -0.3 V vs. RHE with a sweep rate of $100 \mathrm{mVs}^{-1}$.

Electrochemical measurements for ORR

All measurements were carried out with a CHI 660D electrochemical workstation (Chen-Hua,Shanghai, China) in a standard three-electrode cell. Working electrodes were prepared by mixing the 5 mg catalyst with $180 \mu \mathrm{~L}$ isopropanol and $20 \mu \mathrm{~L}$ Nafion ($5 \mathrm{wt} \%$) by sonication 30 min to form a homogeneous ink. An amount of $4 \mu \mathrm{~L}$ of catalyst ink was deposited onto the polished surface of a 3 mm RDE made of glassy carbon and dried in the air. A Pt foil ($2 \mathrm{~cm}^{2}$) and a $\mathrm{Hg} / \mathrm{HgO}$ electrode were used as the counter and reference electrode, respectively. All potentials referred to in this paper are converted to the pH independent reversible hydrogen electrode (RHE):
$E($ RHE $)=E(H g / H g O)+0.059 * p H+0.098$
In the electrochemical measurements, all the electrodes were pretreated by cycling the potential between -0.7 and $0.3 \mathrm{~V}(\mathrm{vs} \mathrm{Hg} / \mathrm{HgO})$ at a sweep rate of $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$ for 20 cycles to activate electrodes and remove the dissolved oxygen before the ORR activity tests in N_{2}-saturated 0.1 M KOH solution until a stable cyclic voltammogram was recorded. Then, the electrolyte was saturated with oxygen by bubbling O_{2} for 30 min prior to the ORR activity tests. A flow of O_{2} was maintained over the electrolyte to ensure O_{2} saturation during the recording of CV. Linear-sweep voltammetry (LSV) measurements were conducted under O_{2}-saturated circumstance by sweeping the potential negatively from 0.3 V to -0.7 V at a scan rate of $5 \mathrm{mV} \cdot \mathrm{s}^{-1}$ with varying rotating speed from 2025 to 400 rpm . The stability tests of the catalysts were conducted by applying a cyclic potential sweep between -0.6 and 0 V in $02-$ saturated 0.1 M KOH solution, with a scan rate of $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$.

Fig. $\mathbf{S 1}$ the $\mathbf{W V O}_{x}$ prepared in absolute ethanol at $200{ }^{\circ} \mathrm{C}$ for 6 h .

Fig. S2 the EDS spectrum of WVO_{x} from the selected red square region and its corresponding mapping images of this region

Fig. S3 TEM images of $\mathrm{MnVO}_{x}(\mathrm{a}), \mathrm{FeVO}_{\mathrm{x}}(\mathrm{b}), \mathrm{CoVO}_{\mathrm{x}}(\mathrm{c})$, and $\mathrm{ZnVO}_{\mathrm{x}}(\mathrm{d})$ prepared in absolute ethanol.

Fig. S4 SEM images of NiVO_{x} prepared in absolute ethanol.

Fig. S5 SEM images of WVO_{x} prepared in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}=1: 1\right)$

Fig. S6 N_{2} adsorption-desorption, and pore size distribution plots of the synthesized catalysts. (a, c, e) $W S_{2}-V_{2} O_{3}-3 h, W_{2}-V_{2} O_{3}-6 h, W_{2}-V_{2} O_{3}-12 h ;(b, d, f) W S_{2}-V_{3} S_{4}-3 h, W_{2}-V_{3} S_{4}-6 h, W S_{2}-V_{3} S_{4}-12 h$

Fig. S7 XPS spectra of $\mathrm{WS}_{2}-\mathrm{V}_{2} \mathrm{O}_{3}-3 \mathrm{~h}$: (a) W 4 f , (c) V 2 p , (e) S 2 p , (g) O 1s.and $\mathrm{WS}_{2}-\mathrm{V}_{2} \mathrm{O}_{3}-6 h$: (b) W 4f, (d) $\vee 2 p$, (f) S 2p, (h) O 1s.

Fig. S8 XPS spectra of $W_{2}-V_{3} S_{4}-3 h$: (a) $W 4 f$, (c) $\vee 2 p$, (e) $S 2 p$, and $W S_{2}-V_{3} S_{4}-6 h$: (b) $W 4 f$, (d) $\vee 2 p$, (f) S

Fig. S9 XRD patterns of (a) WS_{2}, (b) $\mathrm{V}_{2} \mathrm{O}_{3}$ and (c) $\mathrm{V}_{3} \mathrm{~S}_{4}$.

Fig. $\mathbf{S 1 0}$ (a) Polarization curves obtained from $\mathrm{WS}_{2}-\mathrm{V}_{2} \mathrm{O}_{3}-12 \mathrm{~h}, \mathrm{WS}_{2}-650, \mathrm{~V}_{3} \mathrm{~S}_{4}, \mathrm{WS}_{2}-\mathrm{V}_{3} \mathrm{~S}_{4}-12 \mathrm{~h}$ and 20% Pt / C in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ at a scanning rate of $2 \mathrm{mV} \mathrm{s}^{-1}$; All polarization curves are corrected for iR losses except for Pt. (b) Polarization curves of $\mathrm{WS}_{2}-\mathrm{V}_{2} \mathrm{O}_{3}-12 \mathrm{~h}, \mathrm{WS}_{2}-950, \mathrm{~V}_{3} \mathrm{~S}_{4}, \mathrm{WS}_{2}-\mathrm{V}_{3} \mathrm{~S}_{4}-12 \mathrm{~h}$ and $20 \% \mathrm{Pt} / \mathrm{C}$ in O_{2}-saturated 0.1 M KOH solution with scan rate of $5 \mathrm{mV} \cdot \mathrm{s}^{-1}$.

Table S1. Structural Parameters from Nitrogen Sorption Isotherms of the $\mathrm{WS}_{2}-\mathrm{V}_{2} \mathrm{O}_{3}$ and $\mathrm{WS}_{2}-\mathrm{V}_{3} \mathrm{~S}_{4}$ samples which were obtained at different hydrothermal times (3h, 6 h and 12 h)

sample	BJH pore size (nm)	pore volume $\left(\mathbf{c m}^{3} / \mathbf{g}\right)$	BET surface area $\left(\mathbf{m}^{2} / \mathbf{g}\right)$
$\mathbf{W S}_{\mathbf{2}}-\mathbf{V}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}} \mathbf{- 3 h}$	10.45	0.054	25.02
$\mathbf{W S}_{\mathbf{2}}-\mathbf{V}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}} \mathbf{- 6 h}$	9.71	0.052	29.69
$\mathbf{W S}_{\mathbf{2}}-\mathbf{V}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}} \mathbf{- 1 2 h}$	10.55	0.055	21.69
$\mathbf{W S}_{\mathbf{2}} \mathbf{-} \mathbf{V}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{- 3 h}$	12.23	0.040	13.37
$\mathbf{W S}_{\mathbf{2}} \mathbf{-} \mathbf{V}_{\mathbf{2}} \mathbf{S}_{\mathbf{4}} \mathbf{- 6 h}$	13.93	0.048	14.39
$\mathbf{W S}_{\mathbf{2}}-\mathbf{V}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}} \mathbf{- 1 2 h}$	11.98	0.053	17.46

