Supporting Information

Building Carbon Cloth-Based Dendrite-Free Potassium Metal Anodes for Potassium Metal Pouch Cells

Fan Qiao, Jiashen Meng, Junjun Wang, Peijie Wu, Dawei Xu, Qinyou An, Xuanpeng Wang*, Liqiang Mai*

Experimental section

Preparation of K-CC@SnO₂ composite anode. SnCl₂ (0.30 g), poly(vinylpyrrolidone) (PVP, K30, 0.10 g) and 1,4-dicarboxybenzene (0.12 g) were successively dissolved in 70 mL of N, N-dimethylformamide (DMF) solvent under stirring at room temperature for 1 h to obtain a colorless transparent solution. The commercial carbon cloth was then fully immersed in the solution and transferred to a 100 mL Teflon-lined stainless-steel autoclave and heated to 180 °C for 12 h. After it cooled down to room temperature, the carbon cloth was collected, washed with methanol three times and dried at 60 °C vacuum drying oven. Subsequently, after complete pyrolysis at 450 °C for 3 h with heating rate of 5 °C min⁻¹ in Muffle, the CC@SnO₂ was obtained. The CC@SnO₂ slices were obtained by cutting CC@SnO₂ into disc with a diameter of 10 mm. Finally, facile molten infusion was performed under ~80 °C (Video S1) in an argon-filled glovebox (H₂O, O₂ < 0.1 ppm) to embed K into the CC@SnO₂ slice framework. The K-CC@SnO₂ composite anode was obtained with an average load of 21.40-36.18 mg cm⁻². In the pouch cell, the area of the cathode is 23 cm² (5.75 cm *4 cm), the active material is 25 mg, the area of the anode is 27 cm² (6 cm *4.5 cm) and the amount of electrolyte is 2.5 mL.

Material characterization. XRD patterns were received by a Bruker D8 Discover X-ray diffractometer with Cu Kα radiation source. The SEM images were acquired by a JEOL-7100F microscope. XPS analysis was performed using a VG MultiLab 2000. Fourier transform

infrared (FTIR) transmittance spectra were recorded using a Nicolet 6700 (Thermo Fisher Scientific Co., USA) IR spectrometer.

Electrochemical characterization. In the symmetry cells and full cells electrochemical measurements, CR2016-type coin cells were assembled in an argon-filled glove box (H₂O, O₂ < 0.1 ppm), GF/D was used as separator, and 1 M solution of KFSI in ethylene carbonate (EC) and dimethyl carbonate (DEC) (1:1, volume ratio) as the electrolyte. The commercial PTCDI was bought from Alfa Aesar Co. The PTCDI electrodes with an ordinary mass loading (~1.0 mg cm⁻²) were obtained by casting process. 60 wt% active materials, 30 wt% acetylene black and 10 wt% polyvinylidene fluoride binder were mixed to produce a homogenous slurry. Then the slurry was casted on Al foil with carbon-coated and dried at 70 °C overnight. The electrode slices were obtained by cutting the dried foil into disc with a diameter of 10 mm. Galvanostatic charge/discharge tests were conducted using a LAND CT2001A. Cyclic voltammetry (1.5-3.5 V) and electrochemical impedance spectra were tested using an electrochemical workstation (Autolab PGSTAT302N).

Figure S1. SEM images of CC and CC@SnO₂.

Figure S2. High resolution Sn 3d XPS spectra of CC@SnO₂.

Figure S3. The EDS images of (a) CC and (b) K-CC@SnO₂.

Figure S4. SEM images of K-CC@SnO₂.

Figure S5. XRD pattern of K-CC@SnO_{2.}

Figure S6. High resolution K 2p and C 1s XPS spectra of K-CC@SnO₂.

Figure S8. The Discharge curve of K-CC@SnO₂||CC@SnO₂ cell at 1 mA cm⁻².

Figure S9. Impedance plots of K||K and K-CC@SnO₂||K-CC@SnO₂ symmetric cells after 10 cycles.

Figure S10. Schematics of ions and electronics network in a K-CC@SnO₂ electrode (a) and in a traditional chunk of K metal (b).

Figure S11. XPS survey spectrum of (a) the initial and (b) cycled K-CC@SnO₂ electrode. High-resolution (c) S 2p, (d) F 1s, (e) C 1s and (f) O 1s XPS spectra of the pristine and cycled K-CC@SnO₂ electrode.

Figure S13. Typical CV curves of the PTCDI||K-CC@SnO₂ cell at various scan rates.

Figure S14. The charge-discharge curves of $PTCDI||K-CC@SnO_2$ full cell at various current densities.

Figure S15. The in-situ FT-IR spectroscopy of PTCDI in the PTCDI K-CC@SnO₂ full cell.

Figure S16. The cycling performance of PTCDI||K-CC@SnO₂ full cell at 100 mA g⁻¹ (a) and the cycling performance of PTCDI||K full cell at 2000 mA g⁻¹ (b).

Figure S17. Typical galvanostatic voltage profiles in the 10^{th} (a) and 50^{th} (b) cycles at the current density of 2 A g⁻¹.

Organic electrode	Potential	Electrolyte	Capacity retention	Refer
materials	window (V)		(cycle number, current	ence
			density)	
PTCDI	1.5-3.5	1 M KFSI-	70.9% (10000, 2000 mA g ⁻	This
		EC/DEC	¹)	work
PTCDI	1.4-3.8	5 M KFSI-	87.5% (600, 4000 mA g ⁻¹)	[1]
		EC/DMC		
PTCDI-DAQ	1.0-3.8	1 M KPF ₆ -	76.7% (900, 3 A g ⁻¹)	[2]
		DME/0.05M		
		LiTFSI		
AQDS	1.4–3.0	0.8 M KPF ₆ -	82.1% (100, 0.1 C)	[3]
		EC/DEC		
o-Na ₂ C ₆ H ₂ O ₆	1.0-3.0	0.8 M KPF ₆ -	38.7% (100, 25 mA g ⁻¹)	[4]
		EC/DEC		
p-Na ₂ C ₆ H ₂ O ₆	1.0-3.0	0.8 M KPF ₆ -	47.3% (50, 0.1 C)	[5]
		EC/DEC		10
VK@CNT	0.2 - 2.5	0.8 M KPF ₆ -	65.6% (100, 100 mA g ⁻¹)	[6]
		EC/DEC		[7]
PTCDA	1.5–3.5	0.5 M KPF_6 -	77% (200, 10 mA g ⁻¹)	[/]
	0.1.0.0	EC/DEC		[9]
K ₄ PTC@CNTs	0.1–2.0	I M KFSI-	73.5% (500, 50 mA g ⁻¹)	[0]
K CDDC	0125	EC/DMC	124 = 41 = 1(100, 50)	[0]
K ₂ SBDC	0.1–2.5	I M KFSI-	$124 \text{ mAng}(a) 1 (100, 50 \text{ m} \text{ A} \text{ a}^{-1})$	[7]
	0125	EC/DMC	mAg^{-1}	[9]
K ₂ BPDC@GR	0.1–2.3	I M K SI-	a ⁻¹)	[2]
K.TD	0120	LC/DIVIC	g^{-1}	[10]
K 211	0.1–2.0	DME	92.076 (100, 200 IIIA g)	
KaPC	0 1-2 0	1 M KFSI-	93% (100 0 2 C)	[11]
	0.1 2.0	EC/DMC	<i>y y y y y y y y y y</i>	
AIBN	0.01-3.0	-	40% (100, 10 mA g ⁻¹)	[12]
ADAPTS	0.5-3.0	0.8 M KPF ₆ -	79% (400, 1 C)	[13]
	0.5–3.0	EC/DEC	81% (80, 2 C)	
OHTAP	1.1–3.1	1 M KTFSI-	73.6% (50, 0.1 C)	[14]
		DOL/DME		
PQ-1,5	1.2–3.2	1 M KTFSI-	91% (200, 250 mA g ⁻¹)	[15]
		DOL/DME		
PQ-1,4	1.2-3.2	1 M KTFSI-	50 mA g ⁻¹	[15]
		DOL/DME		
PQ-CN	1.2–3.2	1 M KTFSI-	52.2% (200, 250 mA g ⁻¹)	[15]
		DOL/DME		
PI@G	1.5–3.5	KFSI-DME	83% (500, 100 mA g ⁻¹)	[16]
		(1:5, molar		
		ratio)		
PAQS	1.3–3.4	0.5 M	77.2% (200, 200 mA g ⁻¹)	[17]
		KTFSI-		
DDTG	0 0 0 0	DOL/DME		[10]
PPTS	0.8–3.2	I M KPF ₆ -	73.7% (3000, 5 A g ⁻¹)	[18]
		DME		

 Table S1. The summary of OPIBs electrode materials.

PTCDA-kC (k=0,	1.2–3.2	5 M KTFSI-	75% (1000, 2.21 C, k=0),	[19]
2, 3, 4)	1.2-3.2	DME	94% (1000, 7.35 C, k=2)	
p-DPPZ	2.5-4.5	2.2 M KPF ₆ -	59% (2000, 2 A g ⁻¹)	[20]
Ŧ		DG		
ΡΠΡΡΠ	2.5-4.5	0.5 M KPF ₄ -	86% (500, 1 C)	[21]
IDIID	210 110	FC/DFC	00/0 (000, 10)	
рнат	0031	1 M KPF.	$160 \text{ mAb } \text{g}^{-1}$ (4600 10 A	[22]
IIIAI	0.9-3.4	$1 \text{ MI KI } 1_6$ -	(4000, 10 A	
	0.01.2.0		$g^{(1)}$	[23]
MIL-125(11)	0.01 - 3.0	I M KFSI-	90.2% (2000, 200 mA g ⁻¹)	[23]
		EC/DEC		5 6 43
$L-Co_2(OH)_2BDC$	0.2 - 3.0	1 M KPF ₆ -	188 mAh g ⁻¹ (600, 1 Ag ⁻¹)	[24]
		DME		
K-MOF	0.1–2.0	1 M KFSI-	92% (300, 100 mA g ⁻¹)	[25]
$[C_7H_3KNO_4]_n(a)C$		EC/DMC	· _ /	
NT				
MOF-	0.01-3.0	1 M KFSI-	132 mAh g ⁻¹ (200, 200 mA	[26]
235/MCNTs	0.01 0.0	EC/DEC	σ^{-1}	
LICE@CNs@BiN	0.01_3.0	3 M KESL	77% (600, 100 mA σ^{-1})	[27]
OCTWCINSWDIN	0.01-5.0	DME	//// (000, 100 IIIA g)	
CTE 0	0.01.2.0		$72.40/(200, 100, \dots, 4, -1)$	[28]
CIF-0	0.01-3.0	0.8 M KPF_6 -	/3.4% (200, 100 mA g ⁻¹)	[20]
		EC/DEC		[20]
CTF-1	0.01 - 3.0	0.8 M KPF ₆ -	60 mAh g ⁻¹ (200, 100 mA	[28]
		EC/DEC	g ⁻¹)	
COF-10@CNT	0.005-3.0	1 M KFSI-	161 mAh g ⁻¹ (4000, 1 A g ⁻	[29]
-		EC/DEC	1)	
CMPs	0.1-3.0	0.8 M KPF ₆ -	272 mAh g ⁻¹ (500, 50 mA	[30]
		EC/DEC	g ⁻¹)	
		20,010	0/	

Figure S18. The charge/discharge profiles of PTCDI||K-CC@SnO₂ pouch cell.

[1] M. Xiong, W. Tang, B. Cao, C. Yang and C. Fan, *J. Mater. Chem. A* 2019, *7*, 20127.
[2] Y. Hu, W. Tang, Q. Yu, X. Wang, W. Liu, J. Hu and C. Fan, *Adv. Funct. Mater.* 2020, *30*, 2000675.

[3] J. Zhao, J. Yang, P. Sun and Y. Xu, Electrochem. Commun. 2018, 86, 34.

[4] L. Chen, S. Liu, Y. Wang, W. Liu, Y. Dong, Q. Kuang and Y. Zhao, *Electrochim. Acta* 2019, 294, 46.

[5] L. Chen and Y. Zhao, Mater. Lett. 2019, 243, 69.

[6] Q. Xue, D. Li, Y. Huang, X. Zhang, Y. Ye, E. Fan, L. Li, F. Wu and R. Chen, *J. Mater. Chem. A* **2018**, *6*, 12559.

[7] Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai, K. Fu, S. Lacey, T. Li, J. Wan, X. Han, Y. Bao and L. Hu, *Nano Energy* **2015**, *18*, 205.

[8] C. Wang, W. Tang, Z. Yao, B. Cao and C. Fan, Chem. Commun. 2019, 55, 1801.

[9] C. Li, Q. Deng, H. Tan, C. Wang, C. Fan, J. Pei, B. Cao, Z. Wang and J. Li, ACS Appl. Mater. Interfaces 2017, 9, 27414.

[10] K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen and J. Chen, *Energy Environ. Sci.* 2017, *10*, 552.

[11] Q. Deng, J. Pei, C. Fan, J. Ma, B. Cao, C. Li, Y. Jin, L. Wang and J. Li, *Nano Energy* **2017**, *33*, 350.

[12] Y. Zhu, P. Chen, Y. Zhou, W. Nie and Y. Xu, *Electrochim. Acta* 2019, 318, 262.

[13] Y. Liang, C. Luo, F. Wang, S. Hou, S.-C. Liou, T. Qing, Q. Li, J. Zheng, C. Cui and C. Wang, *Adv. Energy Mater.* **2019**, *9*, 1802986.

[14] A. Slesarenko, I. K. Yakuschenko, V. Ramezankhani, V. Sivasankaran, O. Romanyuk, A. V. Mumyatov, I. Zhidkov, S. Tsarev, E. Z. Kurmaev, A. F. Shestakov, O. V. Yarmolenko, K. J. Stevenson and P. A. Troshin, *J. Power Sources* 2019, *435*, 226724.

[15] M. Zhou, M. Liu, J. Wang, T. Gu, B. Huang, W. Wang, K. Wang, S. Cheng and K. Jiang, *Chem. Commun.* **2019**, *55*, 6054.

[16] Y. Hu, H. Ding, Y. Bai, Z. Liu, S. Chen, Y. Wu, X. Yu, L. Fan and B. Lu, *ACS Appl. Mater. Interfaces* **2019**, *11*, 42078.

[17] Z. Jian, Y. Liang, I. A. Rodríguez-Pérez, Y. Yao and X. Ji, *Electrochem. Commun.* 2016, 71, 5.

[18] M. Tang, Y. Wu, Y. Chen, C. Jiang, S. Zhu, S. Zhuo and C. Wang, *J. Mater. Chem. A* **2019**, *7*, 486.

[19] Z. Tong, S. Tian, H. Wang, D. Shen, R. Yang and C. S. Lee, *Adv. Funct. Mater.* **2020**, *30*, 1907656.

[20] F. A. Obrezkov, V. Ramezankhani, I. Zhidkov, V. F. Traven, E. Z. Kurmaev, K. J.

Stevenson and P. A. Troshin, J. Phys. Chem. Lett. 2019, 10, 5440.

[21] F. A. Obrezkov, A. F. Shestakov, V. F. Traven, K. J. Stevenson and P. A. Troshin, J. *Mater. Chem. A* **2019**, *7*, 11430.

[22] R. R. Kapaev, I. S. Zhidkov, E. Z. Kurmaev, K. J. Stevenson and P. A. Troshin, *J. Mater. Chem. A* **2019**, *7*, 22596.

[23] Y. An, H. Fei, Z. Zhang, L. Ci, S. Xiong and J. Feng, Chem. Commun. 2017, 53, 8360.

[24] X. Xiao, L. Zou, H. Pang and Q. Xu, Chem. Soc. Rev. 2020, 49, 301.

[25] C. Li, K. Wang, J. Li and Q. Zhang, Nanoscale 2020, 12, 7870.

[26] Q. Deng, S. Feng, P. Hui, H. Chen, C. Tian, R. Yang and Y. Xu, *J. Alloys Compd.* **2020**, *830*, 154714.

[27] S. Su, Q. Liu, J. Wang, L. Fan, R. Ma, S. Chen, X. Han and B. Lu, *ACS Appl. Mater. Interfaces* **2019**, *11*, 22474.

[28] S.-Y. Li, W.-H. Li, X.-L. Wu, Y. Tian, J. Yue and G. Zhu, Chem. Sci. 2019, 10, 7695.

[29] X. Chen, H. Zhang, C. Ci, W. Sun and Y. Wang, ACS Nano 2019, 13, 3600.

[30] C. Zhang, Y. Qiao, P. Xiong, W. Ma, P. Bai, X. Wang, Q. Li, J. Zhao, Y. Xu, Y. Chen, J.

H. Zeng, F. Wang, Y. Xu and J.-X. Jiang, ACS Nano 2019, 13, 745.