Supporting Information

Dense Binary Fe-Cu Sites Promoting CO₂ Utilization Enable High Reversible Hybrid Na-CO₂ Battery

Changfan Xu¹, Jing Zhan^{1,2*}, Huanwei Wang¹, Yao Kang³, Feng Liang³

1. School of Metallurgy and Environment, Central South University, Changsha 410083, China;

2. National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals Resources, Changsha 410083, China;

3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

* Corresponding Authors

* E-mail: zhanjing@csu.edu.cn (Jing Zhan); liangfeng@kust.edu.cn (Feng Liang)

Figures and Tables

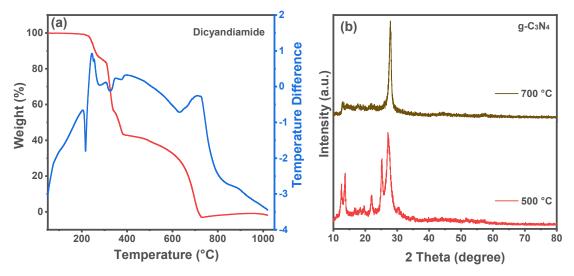


Figure S1 (a) TG-TDA curves of dicyandiamide, (b) XRD patterns of dicyandiamide pyrolysis products at 500 °C and 700 °C in argon

The thermal decomposition behavior of dicyandiamide in argon was first investigated by differential thermal analysis (TG-DSC). As can be seen from Figure S1 (a), the remaining product was zero at temperatures above 720 °C in the argon atmosphere, indicating that the dicyandiamide had completely decomposed and volatilized. As can be seen from the XRD patterns of the dicyandiamide pyrolysis products at 500 °C, 700 °C in Figure S1 (b), the products obtained were all typical of the physical phase of g-C₃N₄ [60]. No carbon material was obtained upon increasing the temperature to 700 °C. It is thus clear that g-C₃N₄ does not generate carbon on pyrolysis in the absence of metal ions.

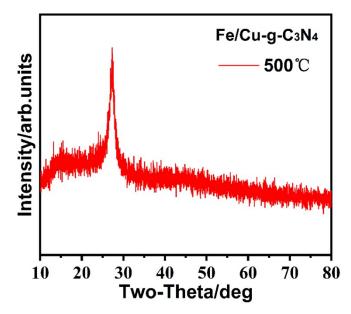


Figure S2 XRD patterns of Fe/Cu-dicyandiamide pyrolysis products at 500 °C in argon

In Fe/Cu-dicyandiamide sample, no peaks corresponding to crystalline metal species such as metal oxides, metal nitrides, metal chlorides, or metal carbides were observed, even when calcined at 500 °C. The absence of metal species peaks suggests that the metal species maintains chemical coordination with the g-C₃N₄ host, most likely in the form of metal–N bonds.

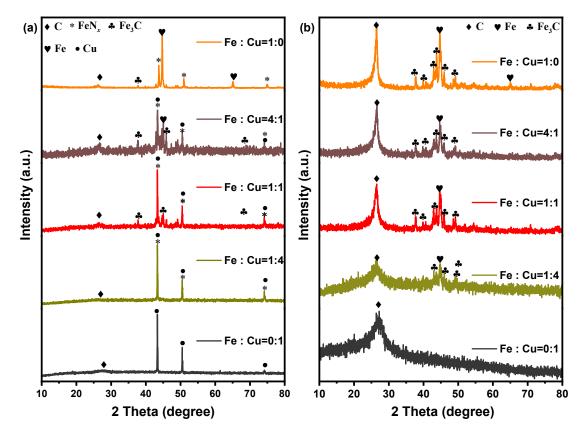


Figure S3 XRD patterns of Fe-Cu-N-C samples obtained with different molar ratios of Fe and Cu (a) before leaching in a solution of H₂SO₄ and FeCl₃, (b) after leaching in a solution of H₂SO₄ and FeCl₃

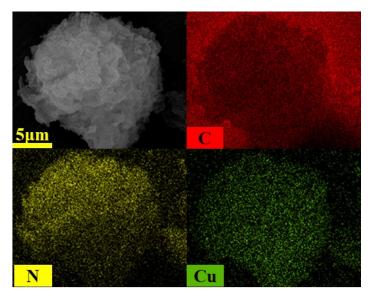


Figure S4 SEM images and the corresponding elemental mapping of Cu-N-C

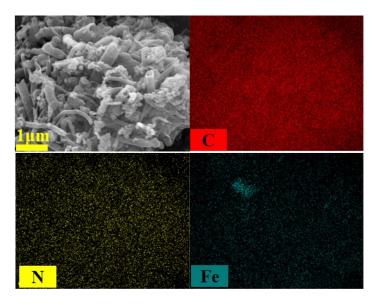


Figure S5 SEM images and the corresponding elemental mapping of Fe-N-C

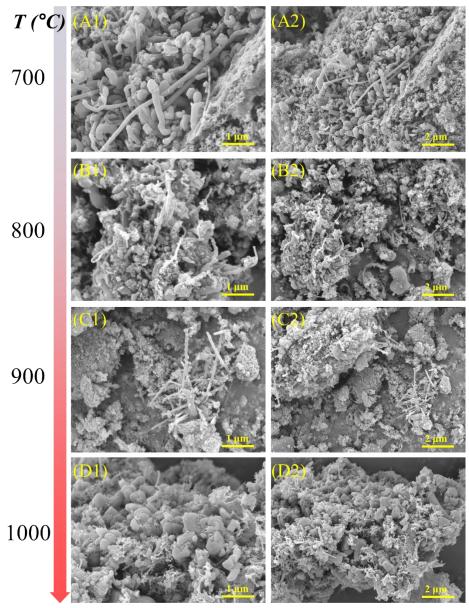


Figure S6 SEM images of Fe-Cu-N-C samples obtained with different heat treatment temperatures (Molar ratio of total metal ions to dicyandiamide: 1:15, and molar ratios of Fe to Cu: 1:1)

(A1–A2) 700 °C, (B1–B2) 800 °C, (C1–C2) 900 °C, (D1–D2) 1000 °C

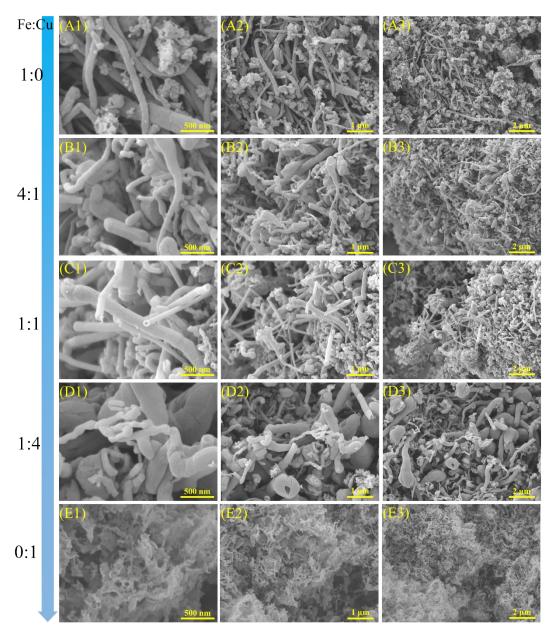


Figure S7 SEM images of Fe-Cu-N-C samples obtained with different molar ratios of Fe and Cu (Molar ratio of total metal ions to dicyandiamide: 1:10, and heat treatment temperature: 700 °C)

(A1-A3) 1:0, (B1-B3) 4:1, (C1-C3) 1:1, (D1-D3) 1:4, (E1-E3) 0:1

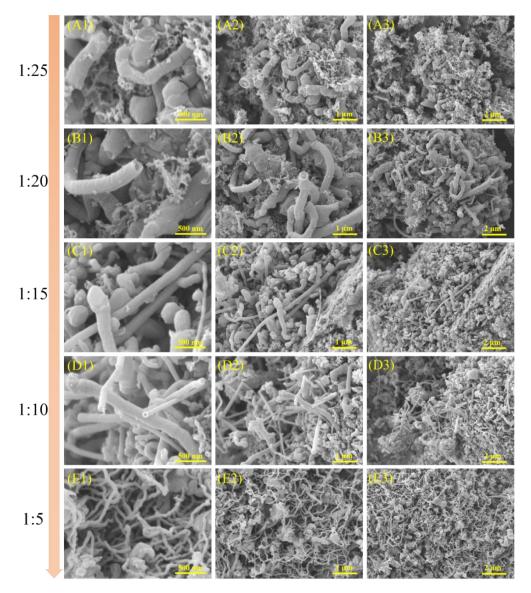


Figure S8 SEM images of Fe-Cu-N-C samples obtained with different molar ratios of total metal ions and dicyandiamide (Molar ratios of Fe to Cu: 1:1, heat treatment temperature: 700 °C)

(A1-A3) 1:25, (B1-B3) 1:20, (C1-C3) 1:15, (D1-D3) 1:10, (E1-E3) 1:5

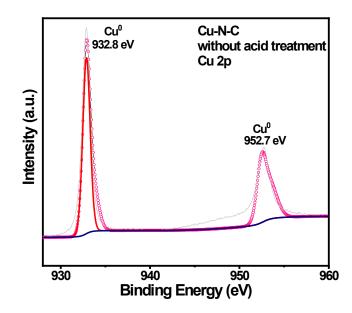


Figure S9 Cu 2p XPS spectra of the Cu-N-C before leaching in a solution of H_2SO_4 and FeCl₃

Figure S10 The cycling performance of hybrid Na-CO₂ battery with Fe-Cu-N-C at a current density of 0.1 mA \cdot cm⁻², 4 h per cycle

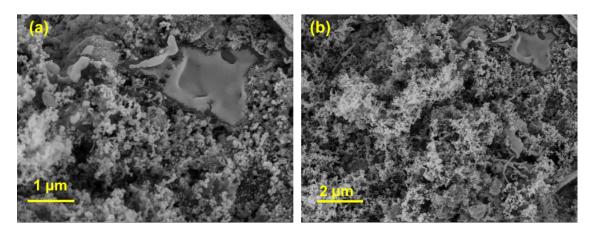


Figure S11 Ex-situ SEM images Fe-Cu-N-C electrode after charge. Hardly any flocculent products were observed.

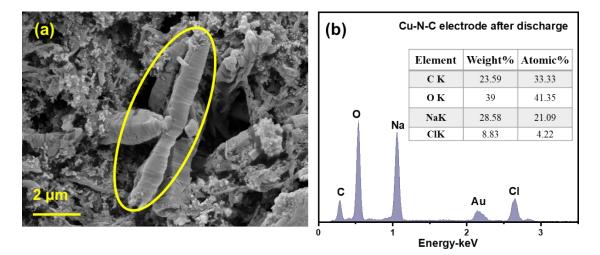


Figure S12 Ex-situ SEM images and EDS results of Cu-N-C electrode after charge. (The undecomposed discharge products are still present.)

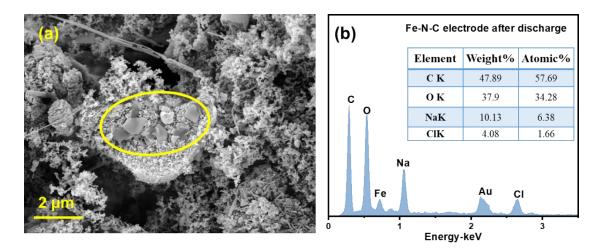


Figure S13 Ex-situ SEM images and EDS results of Fe-N-C electrode after charge. (The undecomposed discharge products are still present.)

		and Fe-Cu-N	-C	
Comulas	$\mathbf{S}_{\mathrm{BET}}$	S _{DFT} ^{a)}	V _{DFT} ^{b)}	Average pore
Samples	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	Diamete
Fe-N-C	210	175.1	0.716	14.1 nm
Cu-N-C	133	113	0.492	16.0 nm
Fe-Cu-N-C	141	118	0.305	9.06 nm

Table S1 Specific surface area and pore structure parameters of Fe-N-C, Cu-N-C

Table S2 Element atomic percentage of Fe-N-C, Cu-N-C, and Fe-Cu-N-C

		Speci	es concentration	(at %)	
Sample	С	0	N	Cu	Fe
Fe-N/C	55.49	42.31	2.02	/	0.18
Cu-N/C	59.79	8.4	30.85	0.96	/
Fe-Cu-N/C	50.31	44.14	5.06	0.22	0.28

calculated from XPS results

Table S3 Distribution of each C species, obtained from fitting the C1s XPS spectra results and corresponding characteristic peak position (normalized to the surface C atoms of each material)

~ .		Species concent	tration (at %)	
Sample	С-С	C–N	С-0/С=0	ππ*
Fe-N/C	39.0	40.9	12.1	8.0
	(284.6 eV)	(285.2 eV)	(280.0 eV)	(291.3 eV)
Cu-N/C	41.7	40.6	15.5	2.5
	(284.7 eV)	(286.3 eV)	(288.1 eV)	(290.8 eV)
Fe-Cu-N/C	59.2	21.8	13.0	6.0
	(284.7 eV)	(286.1 eV)	(287.9 eV)	(291.6 eV)

	surface in atoms of each matchar)					
	Species concentration (at %)					
Sample	Oxidized-N	Graphitic-N	Pyrrolic-N	$M - N_x$	Pyridinic-N	
E- N/C	31.08	25.24	12.69	6.05	24.94	
Fe-N/C	(402.75 eV)	(401.08 eV)	(399.93 eV)	(399.06 eV)	(398.34 eV)	
Cu-N/C	3.08	1	35.13	14.41	47.38	
Cu-IN/C	(402.15 eV)	/	(400.05 eV)	(399.05 eV)	(398.38 eV)	
Fe-Cu-N/C	12.23	22.59	15.26	20.29	29.64	
	(402.75 eV)	(401.18 eV)	(399.98 eV)	(399.09 eV)	(398.32 eV)	

Table S4 Distribution of each N species, obtained from fitting the N1s XPS spectra results and corresponding characteristic peak position (normalized to the surface N atoms of each material)

Table S5 Estimated elemental resistances $(R_e, R_i, R_s, R_{ct}, \text{ and } Z_W)$ in the

equivalent circuits						
Sample	$R_{ m e}$	$R_{ m i}$	$R_{\rm s}$	$R_{\rm ct}$	$Z_{ m W}$	
Sample	(Ω)	(Ω)	(Ω)	(Ω)	(Ω)	
Fe-N-C	64.34	84.98	67.78	19.17	0.975	
Cu-N-C	72.16	52.45	67.72	39.9	4.053	
Fe-Cu-N-C	72.84	52.07	93.73	6.17	0.133	

Cell type	Cathode	Cycling time (h)	Cycling number	Ref.
Hybrid Na-CO ₂	Fe-Cu-N-C	610	1550	This work
Hybrid Na-CO ₂	Co/Co ₉ S ₈ @SNHC	160	200	Materials Today Energy, 2021, 19: 100594 ^[37]
Hybrid Na-CO ₂	N-SWCNH	150	300	Nano Energy, 2020, 68: 104318. ^[49]
Hybrid Na-Air	D-Co-PBA+ Pt/C	340	1000	Materials Today Energy, 2021, 20: 100572. ^[51]
Hybrid Na-Air	Pt ₃ Ni1/NixFe-LDHs	117	350	Journal of Materials Chemistry A, 2020, 8(32): 16355-16365. ^[52]
Hybrid Na-Air	Fe-NiCoP	170	500	Applied Catalysis B: Environmental, 2021, 285: 119786. ^[53]
Hybrid Na-Air	MOF-NCNTs	100	150	Dalton Transactions, 2021, 50(20): 7041-7047. ^[54]
Hybrid Li-Air	$Nd_{0.5}Sr_{0.5}CoO_{3\text{-}d}$	40	20	Journal of Materials Chemistry A, 2016, 4(6): 2122-2127. ^[55]
Hybrid Li-Air	N-MC + NCONF@Ni	420	100	Energy & Environmental Science, 2014, 7(8): 2630. ^[56]
Hybrid Li–Air	Co ₃ O ₄ /ON-CNW	540	130	Nano Energy, 2015, 12: 852- 860. ^[57]
Zn-Air	CoS ₂ /SKJ	340	255	ACS Nano, 2019, 13(6): 7062- 7072. ^[58]
Zn-Air	FeCo-NCps	156	1400	Journal of Materials Chemistry A, 2019, 7(20): 12451-12456. ^[59]
Zn-Air	NDGs-800	78	234	ACS Energy Letters, 2018, 3(5): 1183-1191. ^[60]
Zn-Air	ННРС	388	1165	Applied Catalysis B: Environmental, 2020, 265: 118603. ^[61]

Table S6 The cyclability of aqueous batteries (including hybrid Li/Na-air/CO₂, Zn-air batteries) between this work and other recently reported results