Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb₂S₃

anode for lithium-ion storage

Z.Y. Yang,^a Y.F. Yuan^{*},^a M. Zhu,^a S.M. Yin,^a J. P. Cheng^b and S.Y. Guo^a

^aCollege of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China

^bSchool of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Figure S1 (a) SEM and (b) TEM images of CNTs.

^{*} Corresponding author. E-mail address: yuanyf@zstu.edu.cn (Y.F. Yuan)

Figure S2 ZIF-8 polyhedra particles synthesized without the addition of CNTs.

Figure S3 TEM image of the $CNN@Sb_2S_3$ composite and the corresponding EDS mapping of the

C, S and Sb elements.

Figure S4 EDS spectrum of CNN@Sb₂S₃.

Calculation of weight percentages of Sb₂S₃, Sb and carbon in the composite

- EDS spectrum indicates that the atomic contents of Sb and S are 5.56% and 7.31%. Therefore, the atomic ratio of Sb and S is 1:1.3.
- S is 7.31%. This means that Sb in Sb₂S₃ is 4.87% (7.31%/3 × 2). Thus, the metallic Sb is 0.69% (5.56%-4.87%).

The molar ratio of Sb_2S_3 : Sb = 2.44 : 0.69

The weight ratio of Sb_2S_3 : Sb = 9.85: 1

TGA indicates that at 720 °C, the residual matter is Sb₂O₃ and its weight stabilizes at 54.96%.
Sb₂O₃ comes from oxidation of Sb₂S₃ and Sb.

In the composite, the weight of Sb is set as x%. Then, the weight of Sb_2S_3 is 9.85x%.

 $9.85x \times 291.5/339.7 + x \times 291.5/243.4 = 54.96$

$$x = 5.7$$

 $Sb(wt\%) = 5.7\%, Sb_2S_3(wt\%) = 56.1\%$

C(wt%) = 100%-56.1%-5.7%-1.6%(water)=36.6%

After water is deducted, Sb(wt%) = 5.8%, $Sb_2S_3(wt\%) = 57\%$, C(wt%) = 37.2%

• The theoretical capacities of Sb₂S₃, Sb and carbon are 947, 660 and 372 mAh g⁻¹. The theoretical capacity of the composite = $947 \times 0.57+660 \times 0.058+372 \times 0.372$

$$= 716.5 \text{ mAh g}^{-1}$$

Figure S5 (a) SEM and (b) TEM images of CNTs@C as the control material.

Figure S6 Comparison of rate capability between CNN@Sb₂S₃ and previously reported Sb₂S₃-

based composites.

Figure S7 dQ/dV curves of rate discharge profiles of $CNN@Sb_2S_3$.

Figure S8 CV curves of CNTs@C in the first four cycles at a scan rate of 0.2 mV s⁻¹.

Figure S9 Galvanostatic discharge and charge curves of $CNN@Sb_2S_3$ at the different cycles at the

current density of 1 A g⁻¹.

Materials	Current Density	Specific Capacity	Cycling Performance	Ref
	(A g ⁻¹)	(mAh g ⁻¹)		
Sb ₂ S ₃ @EG'-S	1	646	120	1
Sb ₂ S ₃ -carbon fibers	0.2	606	150	2
S-rGO/Sb ₂ S ₃ composite	0.5	431	600	3
Sb ₂ S ₃ hollow microspheres	1	656	100	4
Sb@N-C nanocomposite	0.2	603	300	5
CPC/Sb ₂ S ₃	0.1	1100	200	6
	1	500	300	
Sb ₂ S ₃ -graphite	0.2	638	250	7
	1	496	500	
Sb ₂ S ₃ /graphene	0.2	670	200	8
$Sb_2S_3(a)C$	0.1	745	160	9
Sb ₂ S ₃ /MMCN@ppy	1	556	300	10
Sb ₂ S ₃ /CNT	0.2	443	100	11
CNN@Sb ₂ S ₃	0.2	1056.6	100	This Work
	1	710.5	1500	
	5	316	1700	
	10	201.5	1000	

Table S1 Cycling performance comparison between $CNN@Sb_2S_3$ and previously reported Sb_2S_3 -

based composites.

Lattice constants	Before cycling (Å)	After 500 cycles (Å)
а	11.1465	10.1212
b	11.2618	11.1037
С	3.7628	4.0201

Table S2 Lattice constants of Sb_2S_3 before cycling and after 500 cycles at 1 A g⁻¹.

References

 S.H. Wang, Y. Cheng, H.J. Xue, W.Q. Liu, Z. Yi, L.M. Chang, L.M. Wang, Multifunctional sulfur-mediated strategy enabling fast-charging Sb₂S₃ micro-package anode for lithium-ion storage, J. Mater. Chem. A 2021, 9, 7838-7847.

[2] H. Yin, K.S. Hui, X. Zhao, S.L. Mei, X.W. Lv, K.N. Hui, J. Chen, Eco-friendly synthesis of selfsupported N-doped Sb₂S₃-carbon fibers with high atom utilization and zero discharge for commercial full lithium-ion batteries, ACS Appl. Energy Mater. 2020, 3, 6897-6906.

[3] X.Z. Zhou, Z.F. Zhang, P.F. Yan, Y.Y. Jiang, H.Y. Wang, Y.G. Tang, Sulfur-doped reduced graphene oxide/Sb₂S₃ composite for superior lithium and sodium storage, Mater. Chem. Phys. 2020, 244, 122661.

[4] J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, X.Y. Wang, Template-free synthesis of Sb₂S₃ hollow microspheres as anode materials for lithium-ion and sodium-ion batteries, Nanomicro Lett. 2018, 10, 12.

[5] W. Luo, F. Li, J.J. Gaumet, P. Magri, S. Diliberto, L. Zhou, L.Q. Mai, Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage, Adv. Energy Mater. 2018, 8, 1703237.

[6] V. Mullaivananathan, N. Kalaiselvi. Sb₂S₃ added bio-carbon: Demonstration of potential anode in lithium and sodium-ion batteries, Carbon 2019, 144, 772-780.

[7] Y.X. Liu, Z.C. Lu, J. Cui, H. Liu, J. Liu, R.Z. Hu, M. Zhu, Plasma milling modified Sb₂S₃-graphite nanocomposite as a highly reversible alloying-conversion anode material for lithium storage, Electrochim. Acta 2019, 310, 26-37.

[8] Y.C. Dong, S.L. Yang, Z.Y. Zhang, J.-M. Lee, J.A. Zapien, Enhanced electrochemical

performance of lithium ion batteries using Sb₂S₃ nanorods wrapped in graphene nanosheets as anode materials, Nanoscale 2018, 10, 3159-3165.

[9] W. Luo, X. Ao, Z.S. Li, L. Lv, J.G. Li, G. Hong, Q.H. Wu, C.D. Wang, Imbedding ultrafine Sb₂S₃ nanoparticles in mesoporous carbon sphere for high-performance lithium-ion battery, Electrochim. Acta 2018, 290, 185-192.

[10] W.H. Yin, W.W. Chai, K. Wang, W.K. Ye, Y.C. Rui, B.H.J. Tang, A highly Meso@Microporous carbon-supported antimony sulfide nanoparticles coated by conductive polymer for high-performance lithium and sodium ion batteries, Electrochim. Acta 2019, 321, 134699.

[11] I. Elizabeth, B.P. Singh, S. Gopukumar, Electrochemical performance of Sb₂S₃/CNT freestanding flexible anode for Li-ion batteries, J. Mater. Sci. 2019, 54, 7110-7118.